BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares Ó, Subiza JL. Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations. Front Immunol 2018;9:2936. [PMID: 30619296 DOI: 10.3389/fimmu.2018.02936] [Cited by in Crossref: 109] [Cited by in F6Publishing: 84] [Article Influence: 27.3] [Reference Citation Analysis]
Number Citing Articles
1 Palgen JL, Feraoun Y, Dzangué-Tchoupou G, Joly C, Martinon F, Le Grand R, Beignon AS. Optimize Prime/Boost Vaccine Strategies: Trained Immunity as a New Player in the Game. Front Immunol 2021;12:612747. [PMID: 33763063 DOI: 10.3389/fimmu.2021.612747] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
2 Benn CS, Fisker AB, Rieckmann A, Sørup S, Aaby P. Vaccinology: time to change the paradigm? Lancet Infect Dis 2020;20:e274-83. [PMID: 32645296 DOI: 10.1016/S1473-3099(19)30742-X] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
3 Kusi KA, Frimpong A, Partey FD, Lamptey H, Amoah LE, Ofori MF. High infectious disease burden as a basis for the observed high frequency of asymptomatic SARS-CoV-2 infections in sub-Saharan Africa. AAS Open Res 2021;4:2. [DOI: 10.12688/aasopenres.13196.2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Harriett AJ, Esher Righi S, Lilly EA, Fidel P, Noverr MC. Efficacy of Candida dubliniensis and Fungal β-Glucans in Inducing Trained Innate Immune Protection Against Inducers of Sepsis. Front Cell Infect Microbiol 2022;12:898030. [DOI: 10.3389/fcimb.2022.898030] [Reference Citation Analysis]
5 Singh R, Kang A, Luo X, Jeyanathan M, Gillgrass A, Afkhami S, Xing Z. COVID-19: Current knowledge in clinical features, immunological responses, and vaccine development. FASEB J 2021;35:e21409. [PMID: 33577115 DOI: 10.1096/fj.202002662R] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
6 van Steenwijk HP, Bast A, de Boer A. Immunomodulating Effects of Fungal Beta-Glucans: From Traditional Use to Medicine. Nutrients 2021;13:1333. [PMID: 33920583 DOI: 10.3390/nu13041333] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Trovato M, Sartorius R, D'Apice L, Manco R, De Berardinis P. Viral Emerging Diseases: Challenges in Developing Vaccination Strategies. Front Immunol 2020;11:2130. [PMID: 33013898 DOI: 10.3389/fimmu.2020.02130] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
8 Téllez-martínez D, Batista-duharte A, Portuondo DL, Carlos IZ. Prophylactic and therapeutic vaccines against sporotrichosis. Feasibility and prospects. Microbes and Infection 2019;21:432-40. [DOI: 10.1016/j.micinf.2019.05.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Paris S, Chapat L, Martin-Cagnon N, Durand PY, Piney L, Cariou C, Bergamo P, Bonnet JM, Poulet H, Freyburger L, De Luca K. β-Glucan as Trained Immunity-Based Adjuvants for Rabies Vaccines in Dogs. Front Immunol 2020;11:564497. [PMID: 33162977 DOI: 10.3389/fimmu.2020.564497] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Kamat S, Kumari M. BCG Against SARS-CoV-2: Second Youth of an Old Age Vaccine? Front Pharmacol 2020;11:1050. [PMID: 32754036 DOI: 10.3389/fphar.2020.01050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Domnich A, Orsi A, Trombetta C, Guarona G, Panatto D, Icardi G. COVID-19 and Seasonal Influenza Vaccination: Cross-Protection, Co-Administration, Combination Vaccines, and Hesitancy. Pharmaceuticals 2022;15:322. [DOI: 10.3390/ph15030322] [Reference Citation Analysis]
12 Del Fresno C, García-Arriaza J, Martínez-Cano S, Heras-Murillo I, Jarit-Cabanillas A, Amores-Iniesta J, Brandi P, Dunphy G, Suay-Corredera C, Pricolo MR, Vicente N, López-Perrote A, Cabezudo S, González-Corpas A, Llorca O, Alegre-Cebollada J, Garaigorta U, Gastaminza P, Esteban M, Sancho D. The Bacterial Mucosal Immunotherapy MV130 Protects Against SARS-CoV-2 Infection and Improves COVID-19 Vaccines Immunogenicity. Front Immunol 2021;12:748103. [PMID: 34867974 DOI: 10.3389/fimmu.2021.748103] [Reference Citation Analysis]
13 Soto JA, Gálvez NMS, Andrade CA, Ramírez MA, Riedel CA, Kalergis AM, Bueno SM. BCG vaccination induces cross-protective immunity against pathogenic microorganisms. Trends Immunol 2022:S1471-4906(21)00264-7. [PMID: 35074254 DOI: 10.1016/j.it.2021.12.006] [Reference Citation Analysis]
14 Renz-polster H, Tremblay M, Bienzle D, Fischer JE. The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front Cell Neurosci 2022;16:888232. [DOI: 10.3389/fncel.2022.888232] [Reference Citation Analysis]
15 Subiza JL, Palomares O, Quinti I, Sánchez-Ramón S. Editorial: Trained Immunity-Based Vaccines. Front Immunol 2021;12:716296. [PMID: 34249020 DOI: 10.3389/fimmu.2021.716296] [Reference Citation Analysis]
16 Lacoma A, Mateo L, Blanco I, Méndez MJ, Rodrigo C, Latorre I, Villar-Hernandez R, Domínguez J, Prat C. Impact of Host Genetics and Biological Response Modifiers on Respiratory Tract Infections. Front Immunol 2019;10:1013. [PMID: 31134083 DOI: 10.3389/fimmu.2019.01013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
17 Ahmed SM, Nasr MA, Elshenawy SE, Hussein AE, El-Betar AH, Mohamed RH, El-Badri N. BCG vaccination and the risk of COVID 19: A possible correlation. Virology 2022;565:73-81. [PMID: 34742127 DOI: 10.1016/j.virol.2021.10.003] [Reference Citation Analysis]
18 Imran S, Neeland MR, Shepherd R, Messina N, Perrett KP, Netea MG, Curtis N, Saffery R, Novakovic B. A Potential Role for Epigenetically Mediated Trained Immunity in Food Allergy. iScience 2020;23:101171. [PMID: 32480123 DOI: 10.1016/j.isci.2020.101171] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
19 Guryanova SV, Khaitov RM. Strategies for Using Muramyl Peptides - Modulators of Innate Immunity of Bacterial Origin - in Medicine. Front Immunol 2021;12:607178. [PMID: 33959120 DOI: 10.3389/fimmu.2021.607178] [Reference Citation Analysis]
20 Thakur A, Mikkelsen H, Jungersen G. Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019;2019:1356540. [PMID: 31111075 DOI: 10.1155/2019/1356540] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 22.0] [Reference Citation Analysis]
21 Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2021;12:662218. [PMID: 35222350 DOI: 10.3389/fimmu.2021.662218] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-Like Receptor Response to Hepatitis B Virus Infection and Potential of TLR Agonists as Immunomodulators for Treating Chronic Hepatitis B: An Overview. Int J Mol Sci 2021;22:10462. [PMID: 34638802 DOI: 10.3390/ijms221910462] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Han X, Xu P, Ye Q. Analysis of COVID-19 vaccines: Types, thoughts, and application. J Clin Lab Anal 2021;35:e23937. [PMID: 34396586 DOI: 10.1002/jcla.23937] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Reche PA. Potential Cross-Reactive Immunity to SARS-CoV-2 From Common Human Pathogens and Vaccines. Front Immunol 2020;11:586984. [PMID: 33178220 DOI: 10.3389/fimmu.2020.586984] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 13.5] [Reference Citation Analysis]
25 Pérez-Hernández CA, Kern CC, Butkeviciute E, McCarthy E, Dockrell HM, Moreno-Altamirano MMB, Aguilar-López BA, Bhosale G, Wang H, Gems D, Duchen MR, Smith SG, Sánchez-García FJ. Mitochondrial Signature in Human Monocytes and Resistance to Infection in C. elegans During Fumarate-Induced Innate Immune Training. Front Immunol 2020;11:1715. [PMID: 32849605 DOI: 10.3389/fimmu.2020.01715] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Nieto A, Mazón A, Nieto M, Calderón R, Calaforra S, Selva B, Uixera S, Palao MJ, Brandi P, Conejero L, Saz-Leal P, Fernández-Pérez C, Sancho D, Subiza JL, Casanovas M. Bacterial Mucosal Immunotherapy with MV130 Prevents Recurrent Wheezing in Children: A Randomized, Double-Blind, Placebo-controlled Clinical Trial. Am J Respir Crit Care Med 2021;204:462-72. [PMID: 33705665 DOI: 10.1164/rccm.202003-0520OC] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Zareian N, Aprile S, Cristaldi L, Ligotti ME, Vasto S, Farzaneh F. Triggering of Toll-like Receptors in Old Individuals. Relevance for Vaccination. Curr Pharm Des 2019;25:4163-7. [PMID: 31713478 DOI: 10.2174/1381612825666191111155800] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Angulo M, Angulo C. Trained immunity against diseases in domestic animals. Acta Trop 2022;229:106361. [PMID: 35149041 DOI: 10.1016/j.actatropica.2022.106361] [Reference Citation Analysis]
29 Bulut O, Kilic G, Domínguez-Andrés J, Netea MG. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol 2020;32:741-53. [PMID: 32766848 DOI: 10.1093/intimm/dxaa052] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
30 Teran-Navarro H, Salcines-Cuevas D, Calderon-Gonzalez R, Tobes R, Calvo-Montes J, Pérez-Del Molino Bernal IC, Yañez-Diaz S, Fresno M, Alvarez-Dominguez C. A Comparison Between Recombinant Listeria GAPDH Proteins and GAPDH Encoding mRNA Conjugated to Lipids as Cross-Reactive Vaccines for Listeria, Mycobacterium, and Streptococcus. Front Immunol 2021;12:632304. [PMID: 33953709 DOI: 10.3389/fimmu.2021.632304] [Reference Citation Analysis]
31 Fleites YA, Aguiar J, Cinza Z, Bequet M, Marrero E, Vizcaíno M, Esquivel I, Diaz M, Sin-Mayor A, Garcia M, Martinez SM, Beato A, Galarraga AG, Mendoza-Mari Y, Valdés I, García G, Lemos G, González I, Canaán-Haden C, Figueroa N, Oquendo R, Akbar SM, Mahtab MA, Uddin MH, Guillén GE, Muzio VL, Pentón E, Aguilar JC. HeberNasvac, a Therapeutic Vaccine for Chronic Hepatitis B, Stimulates Local and Systemic Markers of Innate Immunity: Potential Use in SARS-CoV-2 Postexposure Prophylaxis. Euroasian J Hepatogastroenterol 2021;11:59-70. [PMID: 34786358 DOI: 10.5005/jp-journals-10018-1344] [Reference Citation Analysis]
32 Magadán S, Mikelez-Alonso I, Borrego F, González-Fernández Á. Nanoparticles and trained immunity: Glimpse into the future. Adv Drug Deliv Rev 2021;175:113821. [PMID: 34087325 DOI: 10.1016/j.addr.2021.05.031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
33 Crisci CD, Ardusso LRF, Mossuz A, Müller L. A Precision Medicine Approach to SARS-CoV-2 Pandemic Management. Curr Treat Options Allergy 2020;:1-19. [PMID: 32391242 DOI: 10.1007/s40521-020-00258-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
34 Kleen TO, Galdon AA, MacDonald AS, Dalgleish AG. Mitigating Coronavirus Induced Dysfunctional Immunity for At-Risk Populations in COVID-19: Trained Immunity, BCG and "New Old Friends". Front Immunol 2020;11:2059. [PMID: 33013871 DOI: 10.3389/fimmu.2020.02059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
35 Brandi P, Conejero L, Cueto FJ, Martínez-Cano S, Dunphy G, Gómez MJ, Relaño C, Saz-Leal P, Enamorado M, Quintas A, Dopazo A, Amores-Iniesta J, Del Fresno C, Nistal-Villán E, Ardavín C, Nieto A, Casanovas M, Subiza JL, Sancho D. Trained immunity induction by the inactivated mucosal vaccine MV130 protects against experimental viral respiratory infections. Cell Rep 2022;38:110184. [PMID: 34986349 DOI: 10.1016/j.celrep.2021.110184] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Varadé J, Magadán S, González-Fernández Á. Human immunology and immunotherapy: main achievements and challenges. Cell Mol Immunol 2021;18:805-28. [PMID: 32879472 DOI: 10.1038/s41423-020-00530-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
37 Salcines-Cuevas D, Terán-Navarro H, Calderón-Gonzalez R, Torres-Rodriguez P, Tobes R, Fresno M, Calvo-Montes J, Molino-Bernal ICPD, Yañez-Diaz S, Alvarez-Dominguez C. Glyceraldehyde-3-phosphate Dehydrogenase Common Peptides of Listeria monocytogenes, Mycobacterium marinum and Streptococcus pneumoniae as Universal Vaccines. Vaccines (Basel) 2021;9:269. [PMID: 33802959 DOI: 10.3390/vaccines9030269] [Reference Citation Analysis]
38 Sánchez-Ramón S, Fernández-Paredes L, Saz-Leal P, Diez-Rivero CM, Ochoa-Grullón J, Morado C, Macarrón P, Martínez C, Villaverde V, de la Peña AR, Conejero L, Hernández-Llano K, Cordero G, Fernández-Arquero M, Gutierrez BF, Candelas G. Sublingual Bacterial Vaccination Reduces Recurrent Infections in Patients With Autoimmune Diseases Under Immunosuppressant Treatment. Front Immunol 2021;12:675735. [PMID: 34149711 DOI: 10.3389/fimmu.2021.675735] [Reference Citation Analysis]
39 Wang J, Peng Y, Xu H, Cui Z, Williams RO 3rd. The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation. AAPS PharmSciTech 2020;21:225. [PMID: 32761294 DOI: 10.1208/s12249-020-01744-7] [Cited by in Crossref: 131] [Cited by in F6Publishing: 99] [Article Influence: 65.5] [Reference Citation Analysis]
40 Martin-Cruz L, Sevilla-Ortega C, Benito-Villalvilla C, Diez-Rivero CM, Sanchez-Ramón S, Subiza JL, Palomares O. A Combination of Polybacterial MV140 and Candida albicans V132 as a Potential Novel Trained Immunity-Based Vaccine for Genitourinary Tract Infections. Front Immunol 2020;11:612269. [PMID: 33552074 DOI: 10.3389/fimmu.2020.612269] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
41 Kusi KA, Frimpong A, Partey FD, Lamptey H, Amoah LE, Ofori MF. High infectious disease burden as a basis for the observed high frequency of asymptomatic SARS-CoV-2 infections in sub-Saharan Africa. AAS Open Res 2021;4:2. [PMID: 34729457 DOI: 10.12688/aasopenres.13196.3] [Reference Citation Analysis]
42 Laupèze B, Del Giudice G, Doherty MT, Van der Most R. Vaccination as a preventative measure contributing to immune fitness. NPJ Vaccines 2021;6:93. [PMID: 34315886 DOI: 10.1038/s41541-021-00354-z] [Reference Citation Analysis]
43 Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants. Front Cell Infect Microbiol 2021;11:745016. [PMID: 34692565 DOI: 10.3389/fcimb.2021.745016] [Reference Citation Analysis]
44 Ziogas A, Netea MG. Trained immunity-related vaccines: innate immune memory and heterologous protection against infections. Trends in Molecular Medicine 2022. [DOI: 10.1016/j.molmed.2022.03.009] [Reference Citation Analysis]
45 Defour M, Hooiveld GJEJ, van Weeghel M, Kersten S. Probing metabolic memory in the hepatic response to fasting. Physiol Genomics 2020;52:602-17. [PMID: 33074794 DOI: 10.1152/physiolgenomics.00117.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol. 2020;20:615-632. [PMID: 32887954 DOI: 10.1038/s41577-020-00434-6] [Cited by in Crossref: 280] [Cited by in F6Publishing: 257] [Article Influence: 140.0] [Reference Citation Analysis]
47 Vaz-rodrigues R, Ferreras-colino E, Ugarte-ruíz M, Pesciaroli M, Thomas J, García-seco T, Sevilla IA, Pérez-sancho M, Mateo R, Domínguez L, Gortazar C, Risalde MA. Nonspecific protection of heat-inactivated Mycobacterium bovis against Salmonella Choleraesuis infection in pigs. Vet Res 2022;53. [DOI: 10.1186/s13567-022-01047-8] [Reference Citation Analysis]
48 Pawlowski C, Puranik A, Bandi H, Venkatakrishnan AJ, Agarwal V, Kennedy R, O'Horo JC, Gores GJ, Williams AW, Halamka J, Badley AD, Soundararajan V. Exploratory analysis of immunization records highlights decreased SARS-CoV-2 rates in individuals with recent non-COVID-19 vaccinations. Sci Rep 2021;11:4741. [PMID: 33637783 DOI: 10.1038/s41598-021-83641-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 15.0] [Reference Citation Analysis]
49 Camilli G, Bohm M, Piffer AC, Lavenir R, Williams DL, Neven B, Grateau G, Georgin-Lavialle S, Quintin J. β-Glucan-induced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies. J Clin Invest 2020;130:4561-73. [PMID: 32716363 DOI: 10.1172/JCI134778] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
50 Paris S, Chapat L, Pasin M, Lambiel M, Sharrock TE, Shukla R, Sigoillot-Claude C, Bonnet JM, Poulet H, Freyburger L, De Luca K. β-Glucan-Induced Trained Immunity in Dogs. Front Immunol 2020;11:566893. [PMID: 33162983 DOI: 10.3389/fimmu.2020.566893] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
51 Guevara-Hoyer K, Saz-Leal P, Diez-Rivero CM, Ochoa-Grullón J, Fernández-Arquero M, Pérez de Diego R, Sánchez-Ramón S. Trained Immunity Based-Vaccines as a Prophylactic Strategy in Common Variable Immunodeficiency. A Proof of Concept Study. Biomedicines 2020;8:E203. [PMID: 32660100 DOI: 10.3390/biomedicines8070203] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
52 Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. Front Allergy 2021;2:738987. [DOI: 10.3389/falgy.2021.738987] [Reference Citation Analysis]
53 Barbosa MMF, Kanno AI, Farias LP, Madej M, Sipos G, Sbrana S, Romani L, Boraschi D, Leite LCC, Italiani P. Primary and Memory Response of Human Monocytes to Vaccines: Role of Nanoparticulate Antigens in Inducing Innate Memory. Nanomaterials (Basel) 2021;11:931. [PMID: 33917456 DOI: 10.3390/nano11040931] [Reference Citation Analysis]
54 Bugya Z, Prechl J, Szénási T, Nemes É, Bácsi A, Koncz G. Multiple Levels of Immunological Memory and Their Association with Vaccination. Vaccines (Basel) 2021;9:174. [PMID: 33669597 DOI: 10.3390/vaccines9020174] [Reference Citation Analysis]
55 Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights Into the Molecular Mechanism of Toll-Like Receptor Response to Dengue Virus Infection. Front Microbiol 2021;12:744233. [PMID: 34603272 DOI: 10.3389/fmicb.2021.744233] [Reference Citation Analysis]
56 Vázquez A, Fernández-Sevilla LM, Jiménez E, Pérez-Cabrera D, Yañez R, Subiza JL, Varas A, Valencia J, Vicente A. Involvement of Mesenchymal Stem Cells in Oral Mucosal Bacterial Immunotherapy. Front Immunol 2020;11:567391. [PMID: 33329530 DOI: 10.3389/fimmu.2020.567391] [Reference Citation Analysis]
57 Helou DG, Mauras A, Fasquelle F, Lanza JS, Loiseau PM, Betbeder D, Cojean S. Intranasal vaccine from whole Leishmania donovani antigens provides protection and induces specific immune response against visceral leishmaniasis. PLoS Negl Trop Dis 2021;15:e0009627. [PMID: 34403413 DOI: 10.1371/journal.pntd.0009627] [Reference Citation Analysis]
58 Patil V, Renu S, Feliciano-Ruiz N, Han Y, Ramesh A, Schrock J, Dhakal S, HogenEsch H, Renukaradhya GJ. Intranasal Delivery of Inactivated Influenza Virus and Poly(I:C) Adsorbed Corn-Based Nanoparticle Vaccine Elicited Robust Antigen-Specific Cell-Mediated Immune Responses in Maternal Antibody Positive Nursery Pigs. Front Immunol 2020;11:596964. [PMID: 33391267 DOI: 10.3389/fimmu.2020.596964] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Angelidou A, Diray-Arce J, Conti MG, Smolen KK, van Haren SD, Dowling DJ, Husson RN, Levy O. BCG as a Case Study for Precision Vaccine Development: Lessons From Vaccine Heterogeneity, Trained Immunity, and Immune Ontogeny. Front Microbiol 2020;11:332. [PMID: 32218774 DOI: 10.3389/fmicb.2020.00332] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 13.0] [Reference Citation Analysis]
60 Peignier A, Parker D. Trained immunity and host-pathogen interactions. Cell Microbiol 2020;22:e13261. [PMID: 32902895 DOI: 10.1111/cmi.13261] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
61 Gonzalez-Perez M, Sanchez-Tarjuelo R, Shor B, Nistal-Villan E, Ochando J. The BCG Vaccine for COVID-19: First Verdict and Future Directions. Front Immunol 2021;12:632478. [PMID: 33763077 DOI: 10.3389/fimmu.2021.632478] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
62 Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021;301:122-44. [PMID: 33709421 DOI: 10.1111/imr.12965] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
63 Kayesh MEH, Kohara M, Tsukiyama-Kohara K. An Overview of Recent Insights into the Response of TLR to SARS-CoV-2 Infection and the Potential of TLR Agonists as SARS-CoV-2 Vaccine Adjuvants. Viruses 2021;13:2302. [PMID: 34835108 DOI: 10.3390/v13112302] [Reference Citation Analysis]
64 Gremese E, Ferraccioli ES, Alivernini S, Tolusso B, Ferraccioli G. Basic immunology may lead to translational therapeutic rationale: SARS-CoV-2 and rheumatic diseases. Eur J Clin Invest 2020;50:e13342. [PMID: 32645207 DOI: 10.1111/eci.13342] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
65 Pittala S, Morrison KS, Ackerman ME. Systems serology for decoding infection and vaccine-induced antibody responses to HIV-1. Curr Opin HIV AIDS 2019;14:253-64. [PMID: 31033729 DOI: 10.1097/COH.0000000000000558] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
66 Xing Z, Afkhami S, Bavananthasivam J, Fritz DK, D'Agostino MR, Vaseghi-Shanjani M, Yao Y, Jeyanathan M. Innate immune memory of tissue-resident macrophages and trained innate immunity: Re-vamping vaccine concept and strategies. J Leukoc Biol 2020;108:825-34. [PMID: 32125045 DOI: 10.1002/JLB.4MR0220-446R] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 9.5] [Reference Citation Analysis]
67 Csaba G. Possible contribution of trained immunity in faulty hormonal imprinting and DOHaD: Review and hypothesis. Acta Microbiol Immunol Hung 2020;67:143-7. [PMID: 32997645 DOI: 10.1556/030.2020.01178] [Reference Citation Analysis]
68 Pellon A, Barriales D, Peña-Cearra A, Castelo-Careaga J, Palacios A, Lopez N, Atondo E, Pascual-Itoiz MA, Martín-Ruiz I, Sampedro L, Gonzalez-Lopez M, Bárcena L, Martín-Mateos T, Landete JM, Prados-Rosales R, Plaza-Vinuesa L, Muñoz R, de Las Rivas B, Rodríguez JM, Berra E, Aransay AM, Abecia L, Lavín JL, Rodríguez H, Anguita J. The commensal bacterium Lactiplantibacillus plantarum imprints innate memory-like responses in mononuclear phagocytes. Gut Microbes 2021;13:1939598. [PMID: 34224309 DOI: 10.1080/19490976.2021.1939598] [Reference Citation Analysis]
69 Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Front Immunol 2020;11:622614. [PMID: 33679711 DOI: 10.3389/fimmu.2020.622614] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
70 Ochoa-Grullón J, Benavente Cuesta C, González Fernández A, Cordero Torres G, Pérez López C, Peña Cortijo A, Conejero Hall L, Mateo Morales M, Rodríguez de la Peña A, Díez-Rivero CM, Rodríguez de Frías E, Guevara-Hoyer K, Fernández-Arquero M, Sánchez-Ramón S. Trained Immunity-Based Vaccine in B Cell Hematological Malignancies With Recurrent Infections: A New Therapeutic Approach. Front Immunol 2020;11:611566. [PMID: 33679698 DOI: 10.3389/fimmu.2020.611566] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
71 Calzas C, Chevalier C. Innovative Mucosal Vaccine Formulations Against Influenza A Virus Infections. Front Immunol 2019;10:1605. [PMID: 31379823 DOI: 10.3389/fimmu.2019.01605] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
72 Roy S, Baruah K, Bossier P, Vanrompay D, Norouzitallab P. Induction of transgenerational innate immune memory against Vibrio infections in a brine shrimp (Artemia franciscana) model. Aquaculture 2022;557:738309. [DOI: 10.1016/j.aquaculture.2022.738309] [Reference Citation Analysis]
73 Haghdoust S, Noroozbeygi M, Hajimollahoseini M, Masooleh MM, Yeganeh F. A candidate vaccine composed of live nonpathogenic Iranian Lizard Leishmania mixed with Chitin microparticles protects mice against Leishmania major infection. Acta Trop 2022;227:106298. [PMID: 34971566 DOI: 10.1016/j.actatropica.2021.106298] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Lorenzo-Gómez MF, Padilla-Fernández B, Flores-Fraile J, Valverde-Martínez S, González-Casado I, Hernández JD, Sánchez-Escudero A, Vicente Arroyo MJ, Martínez-Huélamo M, Criado FH, Blanco-Tarrío E, Márquez-Sánchez M, Flores-Fraile MC, Saz-Leal P, Mirón-Canelo JA, García-Perdomo HA, García-Cenador MB. Impact of whole-cell bacterial immunoprophylaxis in the management of recurrent urinary tract infections in the frail elderly. Vaccine 2021;39:6308-14. [PMID: 34538523 DOI: 10.1016/j.vaccine.2021.08.093] [Reference Citation Analysis]
75 Abdelghani Z, Hourani N, Zaidan Z, Dbaibo G, Mrad M, Hage-Sleiman R. Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021. [PMID: 34370077 DOI: 10.1007/s00203-021-02505-1] [Reference Citation Analysis]
76 Martínez A, Bono C, Gozalbo D, Goodridge HS, Gil ML, Yáñez A. TLR2 and Dectin-1 Signaling in Mouse Hematopoietic Stem and Progenitor Cells Impacts the Ability of the Antigen Presenting Cells They Produce to Activate CD4 T Cells. Cells 2020;9:E1317. [PMID: 32466296 DOI: 10.3390/cells9051317] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
77 Connell AR, Connell J, Leahy TR, Hassan J. Mumps Outbreaks in Vaccinated Populations-Is It Time to Re-assess the Clinical Efficacy of Vaccines? Front Immunol 2020;11:2089. [PMID: 33072071 DOI: 10.3389/fimmu.2020.02089] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
78 Fernández-Delgado I, Calzada-Fraile D, Sánchez-Madrid F. Immune Regulation by Dendritic Cell Extracellular Vesicles in Cancer Immunotherapy and Vaccines. Cancers (Basel) 2020;12:E3558. [PMID: 33260499 DOI: 10.3390/cancers12123558] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
79 Leite Pereira A, Jouhault Q, Marcos Lopez E, Cosma A, Lambotte O, Le Grand R, Lehmann MH, Tchitchek N. Modulation of Cell Surface Receptor Expression by Modified Vaccinia Virus Ankara in Leukocytes of Healthy and HIV-Infected Individuals. Front Immunol 2020;11:2096. [PMID: 33013882 DOI: 10.3389/fimmu.2020.02096] [Reference Citation Analysis]
80 Marín-Hernández D, Nixon DF, Hupert N. Heterologous vaccine interventions: boosting immunity against future pandemics. Mol Med 2021;27:54. [PMID: 34058986 DOI: 10.1186/s10020-021-00317-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
81 Benito-Villalvilla C, Soria I, Pérez-Diego M, Fernández-Caldas E, Subiza JL, Palomares O. Alum impairs tolerogenic properties induced by allergoid-mannan conjugates inhibiting mTOR and metabolic reprogramming in human DCs. Allergy 2020;75:648-59. [PMID: 31494959 DOI: 10.1111/all.14036] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
82 Aziz AB, Dembinski JL, Jahan Y. Debate on Bacille Calmette-Guérin vaccination against COVID-19: Is it worth performing clinical trials? Biosaf Health 2020;2:113-4. [PMID: 32838283 DOI: 10.1016/j.bsheal.2020.07.001] [Reference Citation Analysis]
83 Ferluga J, Yasmin H, Bhakta S, Kishore U. Vaccination Strategies Against Mycobacterium tuberculosis: BCG and Beyond. Adv Exp Med Biol 2021;1313:217-40. [PMID: 34661897 DOI: 10.1007/978-3-030-67452-6_10] [Reference Citation Analysis]
84 Martinón-Torres F, García-Sastre A, Pollard AJ, Martín C, Osterhaus A, Ladhani SN, Ramilo O, Gómez Rial J, Salas A, Bosch FX, Martinón-Torres M, Mina MJ, Cherry J. TIPICO XI: report of the first series and podcast on infectious diseases and vaccines (aTIPICO). Hum Vaccin Immunother 2021;:1-29. [PMID: 34762551 DOI: 10.1080/21645515.2021.1953351] [Reference Citation Analysis]
85 Covián C, Ríos M, Berríos-Rojas RV, Bueno SM, Kalergis AM. Induction of Trained Immunity by Recombinant Vaccines. Front Immunol 2020;11:611946. [PMID: 33584692 DOI: 10.3389/fimmu.2020.611946] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
86 Sokolowska M, Lukasik ZM, Agache I, Akdis CA, Akdis D, Akdis M, Barcik W, Brough HA, Eiwegger T, Eljaszewicz A, Eyerich S, Feleszko W, Gomez-Casado C, Hoffmann-Sommergruber K, Janda J, Jiménez-Saiz R, Jutel M, Knol EF, Kortekaas Krohn I, Kothari A, Makowska J, Moniuszko M, Morita H, O'Mahony L, Nadeau K, Ozdemir C, Pali-Schöll I, Palomares O, Papaleo F, Prunicki M, Schmidt-Weber CB, Sediva A, Schwarze J, Shamji MH, Tramper-Stranders GA, van de Veen W, Untersmayr E. Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives-A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020;75:2445-76. [PMID: 32584441 DOI: 10.1111/all.14462] [Cited by in Crossref: 87] [Cited by in F6Publishing: 69] [Article Influence: 43.5] [Reference Citation Analysis]
87 Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021;12:666983. [PMID: 33854516 DOI: 10.3389/fimmu.2021.666983] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
88 [DOI: 10.1101/2020.07.27.20161976] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
89 Chan L, Alizadeh K, Alizadeh K, Fazel F, Kakish JE, Karimi N, Knapp JP, Mehrani Y, Minott JA, Morovati S, Rghei A, Stegelmeier AA, Vanderkamp S, Karimi K, Bridle BW. Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines (Basel) 2021;9:979. [PMID: 34579216 DOI: 10.3390/vaccines9090979] [Reference Citation Analysis]
90 Pasco ST, Anguita J. Lessons from Bacillus Calmette-Guérin: Harnessing Trained Immunity for Vaccine Development. Cells 2020;9:E2109. [PMID: 32948003 DOI: 10.3390/cells9092109] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Swartzwelter BJ, Verde A, Rehak L, Madej M, Puntes VF, De Luca AC, Boraschi D, Italiani P. Interaction between Macrophages and Nanoparticles: In Vitro 3D Cultures for the Realistic Assessment of Inflammatory Activation and Modulation of Innate Memory. Nanomaterials (Basel) 2021;11:207. [PMID: 33467414 DOI: 10.3390/nano11010207] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
92 Feraoun Y, Palgen JL, Joly C, Tchitchek N, Marcos-Lopez E, Dereuddre-Bosquet N, Gallouet AS, Contreras V, Lévy Y, Martinon F, Le Grand R, Beignon AS. The Route of Vaccine Administration Determines Whether Blood Neutrophils Undergo Long-Term Phenotypic Modifications. Front Immunol 2021;12:784813. [PMID: 35058925 DOI: 10.3389/fimmu.2021.784813] [Reference Citation Analysis]
93 Covián C, Retamal-Díaz A, Bueno SM, Kalergis AM. Could BCG Vaccination Induce Protective Trained Immunity for SARS-CoV-2? Front Immunol 2020;11:970. [PMID: 32574258 DOI: 10.3389/fimmu.2020.00970] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 18.5] [Reference Citation Analysis]