BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu Y, Jiang S, Ying T. Single-Domain Antibodies As Therapeutics against Human Viral Diseases. Front Immunol 2017;8:1802. [PMID: 29326699 DOI: 10.3389/fimmu.2017.01802] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 8.6] [Reference Citation Analysis]
Number Citing Articles
1 Huang PN, Wang HC, Hung HC, Tseng SN, Chang TY, Chou MY, Chen YJ, Wang YM, Shih SR, Hsu JT. Antiviral Activity of a Llama-Derived Single-Domain Antibody against Enterovirus A71. Antimicrob Agents Chemother 2020;64:e01922-19. [PMID: 32152074 DOI: 10.1128/AAC.01922-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. International Immunopharmacology 2022;105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Reference Citation Analysis]
3 Woods J. Selection of Functional Intracellular Nanobodies. SLAS Discov 2019;24:703-13. [PMID: 31173539 DOI: 10.1177/2472555219853235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
4 Hoey RJ, Eom H, Horn JR. Structure and development of single domain antibodies as modules for therapeutics and diagnostics. Exp Biol Med (Maywood) 2019;244:1568-76. [PMID: 31594404 DOI: 10.1177/1535370219881129] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
5 Godakova SA, Noskov AN, Vinogradova ID, Ugriumova GA, Solovyev AI, Esmagambetov IB, Tukhvatulin AI, Logunov DY, Naroditsky BS, Shcheblyakov DV, Gintsburg AL. Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice. Toxins (Basel) 2019;11:E464. [PMID: 31394847 DOI: 10.3390/toxins11080464] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
6 Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep 2020;10:22370. [PMID: 33353972 DOI: 10.1038/s41598-020-79036-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
7 Roth L, Krah S, Klemm J, Günther R, Toleikis L, Busch M, Becker S, Zielonka S. Isolation of Antigen-Specific VHH Single-Domain Antibodies by Combining Animal Immunization with Yeast Surface Display. In: Zielonka S, Krah S, editors. Genotype Phenotype Coupling. New York: Springer US; 2020. pp. 173-89. [DOI: 10.1007/978-1-4939-9853-1_10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
8 Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021;11:1530. [PMID: 34573872 DOI: 10.3390/diagnostics11091530] [Reference Citation Analysis]
9 Cao M, Su X, Jiang S. Broad-Spectrum Anti-coronavirus Vaccines and Therapeutics to Combat the Current COVID-19 Pandemic and Future Coronavirus Disease Outbreaks. Stem Cell Reports 2021;16:398-411. [PMID: 33691145 DOI: 10.1016/j.stemcr.2020.12.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Liu JL, Webb EM, Zabetakis D, Burke CW, Gardner CL, Glass PJ, Legler PM, Weger-Lucarelli J, Anderson GP, Goldman ER. Stabilization of a Broadly Neutralizing Anti-Chikungunya Virus Single Domain Antibody. Front Med (Lausanne) 2021;8:626028. [PMID: 33585527 DOI: 10.3389/fmed.2021.626028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Koivisto K, Nieminen T, Mejias A, Capella C, Ye F, Mertz S, Peeples M, Ramilo O, Saxén H. RSV Specific Antibodies in Pregnant Women and Subsequent Risk of RSV Hospitalization in Young Infants. J Infect Dis 2021:jiab315. [PMID: 34129040 DOI: 10.1093/infdis/jiab315] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Liu JL, Shriver-Lake LC, Zabetakis D, Anderson GP, Goldman ER. Selection and characterization of protective anti-chikungunya virus single domain antibodies. Mol Immunol 2019;105:190-7. [PMID: 30550981 DOI: 10.1016/j.molimm.2018.11.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
13 [DOI: 10.1101/2020.05.03.074914] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
14 Wang HC, Hung HC, Huang PN, Kung YA, Tseng SN, Wang YM, Shih SR, Tsu-An Hsu J. Engineering a novel IgG-like bispecific antibody against enterovirus A71. Biochem Biophys Rep 2020;24:100860. [PMID: 34095549 DOI: 10.1016/j.bbrep.2020.100860] [Reference Citation Analysis]
15 Liu JL, Shriver-Lake LC, Zabetakis D, Goldman ER, Anderson GP. Selection of Single-Domain Antibodies towards Western Equine Encephalitis Virus. Antibodies (Basel) 2018;7:E44. [PMID: 31544894 DOI: 10.3390/antib7040044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
16 Wang Y, Hu D, Wu Y, Ying T. Recent advances in "universal" influenza virus antibodies: the rise of a hidden trimeric interface in hemagglutinin globular head. Front Med 2020;14:149-59. [PMID: 32239416 DOI: 10.1007/s11684-020-0764-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Shin C, Kim SS, Jo YH. Extending traditional antibody therapies: Novel discoveries in immunotherapy and clinical applications. Mol Ther Oncolytics 2021;22:166-79. [PMID: 34514097 DOI: 10.1016/j.omto.2021.08.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Sadeghian I, Heidari R, Sadeghian S, Raee MJ, Negahdaripour M. Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. Eur J Pharm Sci 2021;169:106094. [PMID: 34896590 DOI: 10.1016/j.ejps.2021.106094] [Reference Citation Analysis]
19 Awi NJ, Teow SY. Antibody-Mediated Therapy against HIV/AIDS: Where Are We Standing Now? J Pathog 2018;2018:8724549. [PMID: 29973995 DOI: 10.1155/2018/8724549] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
20 Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. Adv Mater 2021;:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
21 Soong JX, Chan SK, Lim TS, Choong YS. Optimisation of human VH domain antibodies specific to Mycobacterium tuberculosis heat shock protein (HSP16.3). J Comput Aided Mol Des 2019;33:375-85. [PMID: 30689080 DOI: 10.1007/s10822-019-00186-z] [Reference Citation Analysis]
22 De Vlieger D, Hoffmann K, Van Molle I, Nerinckx W, Van Hoecke L, Ballegeer M, Creytens S, Remaut H, Hengel H, Schepens B, Saelens X. Selective Engagement of FcγRIV by a M2e-Specific Single Domain Antibody Construct Protects Against Influenza A Virus Infection. Front Immunol 2019;10:2920. [PMID: 31921179 DOI: 10.3389/fimmu.2019.02920] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
23 Van Campenhout R, Muyldermans S, Vinken M, Devoogdt N, De Groof TWM. Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules 2021;11:63. [PMID: 33418902 DOI: 10.3390/biom11010063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, Gu C, Zhang R, Tu C, Xie Y, Yang Z, Lu L, Jiang S, Ying T. Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host Microbe 2020;27:891-898.e5. [PMID: 32413276 DOI: 10.1016/j.chom.2020.04.023] [Cited by in Crossref: 107] [Cited by in F6Publishing: 104] [Article Influence: 53.5] [Reference Citation Analysis]
25 Yuan TZ, Garg P, Wang L, Willis JR, Kwan E, Hernandez AGL, Tuscano E, Sever EN, Keane E, Soto C, Mucker EM, Fouch ME, Davidson E, Doranz BJ, Kailasan S, Aman MJ, Li H, Hooper JW, Saphire EO, Crowe JE, Liu Q, Axelrod F, Sato AK. Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. mAbs 2022;14:2002236. [DOI: 10.1080/19420862.2021.2002236] [Reference Citation Analysis]
26 Papp KA, Weinberg MA, Morris A, Reich K. IL17A/F nanobody sonelokimab in patients with plaque psoriasis: a multicentre, randomised, placebo-controlled, phase 2b study. Lancet 2021;397:1564-75. [PMID: 33894834 DOI: 10.1016/S0140-6736(21)00440-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
27 Alfadhli A, Romanaggi C, Barklis RL, Merutka I, Bates TA, Tafesse FG, Barklis E. Capsid-specific nanobody effects on HIV-1 assembly and infectivity. Virology 2021;562:19-28. [PMID: 34246112 DOI: 10.1016/j.virol.2021.07.001] [Reference Citation Analysis]
28 Yu J, Sun Z, Sun X, Sun X, Wei H, Jia W, Pang M, Zhang L, Deng H. Selection and characterization of a Vibrio parahaemolyticus OmpU antibody by phage display. Microb Pathog 2020;143:104136. [PMID: 32165333 DOI: 10.1016/j.micpath.2020.104136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Chen G, Kong Y, Li Y, Huang A, Wang C, Zhou S, Yang Z, Wu Y, Ren J, Ying T. A Promising Intracellular Protein-Degradation Strategy: TRIMbody-Away Technique Based on Nanobody Fragment. Biomolecules 2021;11:1512. [PMID: 34680146 DOI: 10.3390/biom11101512] [Reference Citation Analysis]
30 Zhu S, Huang AG, Luo F, Li J, Li J, Zhu L, Zhao L, Zhu B, Ling F, Wang GX. Application of Virus Targeting Nanocarrier Drug Delivery System in Virus-Induced Central Nervous System Disease Treatment. ACS Appl Mater Interfaces 2019;11:19006-16. [PMID: 31067406 DOI: 10.1021/acsami.9b06365] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
31 Jin Y, Liu B, Younis MH, Huang G, Liu J, Cai W, Wei W. Next-Generation Molecular Imaging of Thyroid Cancer. Cancers (Basel) 2021;13:3188. [PMID: 34202358 DOI: 10.3390/cancers13133188] [Reference Citation Analysis]
32 Tao K, Tzou PL, Nouhin J, Bonilla H, Jagannathan P, Shafer RW. SARS-CoV-2 Antiviral Therapy. Clin Microbiol Rev 2021;:e0010921. [PMID: 34319150 DOI: 10.1128/CMR.00109-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Valdez-Cruz NA, García-Hernández E, Espitia C, Cobos-Marín L, Altamirano C, Bando-Campos CG, Cofas-Vargas LF, Coronado-Aceves EW, González-Hernández RA, Hernández-Peralta P, Juárez-López D, Ortega-Portilla PA, Restrepo-Pineda S, Zelada-Cordero P, Trujillo-Roldán MA. Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microb Cell Fact 2021;20:88. [PMID: 33888152 DOI: 10.1186/s12934-021-01576-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Ramage W, Gaiotto T, Ball C, Risley P, Carnell GW, Temperton N, Cheung CY, Engelhardt OG, Hufton SE. Cross-Reactive and Lineage-Specific Single Domain Antibodies against Influenza B Hemagglutinin. Antibodies (Basel) 2019;8:E14. [PMID: 31544820 DOI: 10.3390/antib8010014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
35 Ma Z, Wang T, Li Z, Guo X, Tian Y, Li Y, Xiao S. A novel biotinylated nanobody-based blocking ELISA for the rapid and sensitive clinical detection of porcine epidemic diarrhea virus. J Nanobiotechnology 2019;17:96. [PMID: 31526383 DOI: 10.1186/s12951-019-0531-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
36 [DOI: 10.1101/2020.07.24.219857] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human Gastrointestinal Tract. Front Microbiol 2019;9:3179. [DOI: 10.3389/fmicb.2018.03179] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
38 Zavrtanik U, Lukan J, Loris R, Lah J, Hadži S. Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies. J Mol Biol 2018;430:4369-86. [PMID: 30205092 DOI: 10.1016/j.jmb.2018.09.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 8.3] [Reference Citation Analysis]
39 Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 2020;5:237. [PMID: 33051445 DOI: 10.1038/s41392-020-00352-y] [Cited by in Crossref: 139] [Cited by in F6Publishing: 148] [Article Influence: 69.5] [Reference Citation Analysis]
40 Esmagambetov IB, Shcheblyakov DV, Egorova DA, Voronina OL, Derkaev AA, Voronina DV, Popova O, Ryabova EI, Shcherbinin DN, Aksenova EI, Semenov AN, Kunda MS, Ryzhova NN, Zubkova OV, Tukhvatulin AI, Logunov DY, Naroditsky BS, Borisevich SV, Gintsburg AL. Nanobodies Are Potential Therapeutic Agents for the Ebola Virus Infection. Acta Naturae 2021;13:53-63. [DOI: 10.32607/actanaturae.11487] [Reference Citation Analysis]
41 Wichgers Schreur PJ, van de Water S, Harmsen M, Bermúdez-Méndez E, Drabek D, Grosveld F, Wernike K, Beer M, Aebischer A, Daramola O, Rodriguez Conde S, Brennan K, Kozub D, Søndergaard Kristiansen M, Mistry KK, Deng Z, Hellert J, Guardado-Calvo P, Rey FA, van Keulen L, Kortekaas J. Multimeric single-domain antibody complexes protect against bunyavirus infections. Elife 2020;9:e52716. [PMID: 32314955 DOI: 10.7554/eLife.52716] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Wang L, Xu J, Kong Y, Liang R, Li W, Li J, Lu J, Dimitrov DS, Yu F, Wu Y, Ying T. Engineering a Novel Antibody-Peptide Bispecific Fusion Protein Against MERS-CoV. Antibodies (Basel) 2019;8:E53. [PMID: 31690009 DOI: 10.3390/antib8040053] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
43 Kulkarni SS, Falzarano D. Unique aspects of adaptive immunity in camelids and their applications. Mol Immunol 2021;134:102-8. [PMID: 33751993 DOI: 10.1016/j.molimm.2021.03.001] [Reference Citation Analysis]
44 Feng B, Chen Z, Sun J, Xu T, Wang Q, Yi H, Niu X, Zhu J, Fan M, Hou R, Shao Y, Huang S, Li C, Hu P, Zheng P, He P, Luo J, Yan Q, Xiong X, Liu J, Zhao J, Chen L. A Class of Shark-Derived Single-Domain Antibodies can Broadly Neutralize SARS-Related Coronaviruses and the Structural Basis of Neutralization and Omicron Escape. Small Methods 2022;:e2200387. [PMID: 35583124 DOI: 10.1002/smtd.202200387] [Reference Citation Analysis]
45 Wu X, Wang Y, Cheng L, Ni F, Zhu L, Ma S, Huang B, Ji M, Hu H, Li Y, Xu S, Shi H, Zhang D, Liu L, Nawaz W, Hu Q, Ye S, Liu Y, Wu Z. Short-Term Instantaneous Prophylaxis and Efficient Treatment Against SARS-CoV-2 in hACE2 Mice Conferred by an Intranasal Nanobody (Nb22). Front Immunol 2022;13:865401. [DOI: 10.3389/fimmu.2022.865401] [Reference Citation Analysis]
46 Sherwood LJ, Hayhurst A. Periplasmic Nanobody-APEX2 Fusions Enable Facile Visualization of Ebola, Marburg, and Mĕnglà virus Nucleoproteins, Alluding to Similar Antigenic Landscapes among Marburgvirus and Dianlovirus. Viruses 2019;11:E364. [PMID: 31010013 DOI: 10.3390/v11040364] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
47 Ruano-Gallego D, Yara DA, Di Ianni L, Frankel G, Schüller S, Fernández LÁ. A nanobody targeting the translocated intimin receptor inhibits the attachment of enterohemorrhagic E. coli to human colonic mucosa. PLoS Pathog 2019;15:e1008031. [PMID: 31465434 DOI: 10.1371/journal.ppat.1008031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
48 Wang C, Hong J, Yang Z, Zhou X, Yang Y, Kong Y, Chen B, Wu H, Qian B, Dimitrov DS, Zhou X, Wu Y, Ying T. Design of a Novel Fab‐Like Antibody Fragment with Enhanced Stability and Affinity for Clinical use. Small Methods. [DOI: 10.1002/smtd.202100966] [Reference Citation Analysis]