BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020;8:480. [PMID: 32612995 DOI: 10.3389/fcell.2020.00480] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Cappellari O, Mantuano P, De Luca A. "The Social Network" and Muscular Dystrophies: The Lesson Learnt about the Niche Environment as a Target for Therapeutic Strategies. Cells 2020;9:E1659. [PMID: 32660168 DOI: 10.3390/cells9071659] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
2 Guan X, Zhou J, Du G, Chen J. Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends Biotechnol 2021:S0167-7799(21)00265-1. [PMID: 34887105 DOI: 10.1016/j.tibtech.2021.11.004] [Reference Citation Analysis]
3 Bhattacharya D, Shah V, Oresajo O, Scimè A. p107 mediated mitochondrial function controls muscle stem cell proliferative fates. Nat Commun 2021;12:5977. [PMID: 34645816 DOI: 10.1038/s41467-021-26176-0] [Reference Citation Analysis]
4 Ehrlich KC, Deng HW, Ehrlich M. Epigenetics of Mitochondria-Associated Genes in Striated Muscle. Epigenomes 2021;6:1. [PMID: 35076500 DOI: 10.3390/epigenomes6010001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Isesele PO, Mazurak VC. Regulation of Skeletal Muscle Satellite Cell Differentiation by Omega-3 Polyunsaturated Fatty Acids: A Critical Review. Front Physiol 2021;12:682091. [PMID: 34149458 DOI: 10.3389/fphys.2021.682091] [Reference Citation Analysis]
6 Chakrabarty RP, Chandel NS. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell 2021;28:394-408. [PMID: 33667360 DOI: 10.1016/j.stem.2021.02.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
7 Heher P, Ganassi M, Weidinger A, Engquist EN, Pruller J, Nguyen TH, Tassin A, Declèves A, Mamchaoui K, Grillari J, Kozlov AV, Zammit PS. Interplay between mitochondrial reactive oxygen species, oxidative stress and hypoxic adaptation in facioscapulohumeral muscular dystrophy: Metabolic stress as potential therapeutic target. Redox Biology 2022. [DOI: 10.1016/j.redox.2022.102251] [Reference Citation Analysis]
8 Levitt DE, Chalapati N, Prendergast MJ, Simon L, Molina PE. Ethanol-Impaired Myogenic Differentiation is Associated With Decreased Myoblast Glycolytic Function. Alcohol Clin Exp Res 2020;44:2166-76. [PMID: 32945016 DOI: 10.1111/acer.14453] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Rahman FA, Quadrilatero J. Emerging role of mitophagy in myoblast differentiation and skeletal muscle remodeling. Semin Cell Dev Biol 2021:S1084-9521(21)00308-6. [PMID: 34924331 DOI: 10.1016/j.semcdb.2021.11.026] [Reference Citation Analysis]
10 Luo N, Yue F, Jia Z, Chen J, Deng Q, Zhao Y, Kuang S. Reduced electron transport chain complex I protein abundance and function in Mfn2-deficient myogenic progenitors lead to oxidative stress and mitochondria swelling. FASEB J 2021;35:e21426. [PMID: 33749882 DOI: 10.1096/fj.202002464R] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Esteca MV, Severino MB, Silvestre JG, Palmeira Dos Santos G, Tamborlin L, Luchessi AD, Moriscot AS, Gustafsson ÅB, Baptista IL. Loss of Parkin Results in Altered Muscle Stem Cell Differentiation during Regeneration. Int J Mol Sci 2020;21:E8007. [PMID: 33126429 DOI: 10.3390/ijms21218007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]