BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xue T, Attarilar S, Liu S, Liu J, Song X, Li L, Zhao B, Tang Y. Surface Modification Techniques of Titanium and its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review. Front Bioeng Biotechnol 2020;8:603072. [PMID: 33262980 DOI: 10.3389/fbioe.2020.603072] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang X, Liu W, Yu X, Wang B, Xu Y, Yan X, Zhang X. Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: A thematic review. Front Bioeng Biotechnol 2022;10:983695. [DOI: 10.3389/fbioe.2022.983695] [Reference Citation Analysis]
2 Liu T, Liu W, Zeng L, Wen Z, Xiong Z, Liao Z, Hu Y. Biofunctionalization of 3D Printed Porous Tantalum Using a Vancomycin–Carboxymethyl Chitosan Composite Coating to Improve Osteogenesis and Antibiofilm Properties. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.2c11715] [Reference Citation Analysis]
3 Aslan N, Aksakal B, Dikici B, Sinirlioglu ZA. Graphene reinforced hybrid-bioceramic coatings on porous-Ti6Al4V for biomedical applications: morphology, corrosion resistance, and cell viability. J Mater Sci. [DOI: 10.1007/s10853-022-07695-7] [Reference Citation Analysis]
4 Unune DR, Brown GR, Reilly GC. Thermal based surface modification techniques for enhancing the corrosion and wear resistance of metallic implants: A review. Vacuum 2022;203:111298. [DOI: 10.1016/j.vacuum.2022.111298] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Yan Q, Xue T, Liu S, Wang W, Wang Y, Song X, Yang X, Shang W. A comparative study of surface characterization and corrosion behavior of micro-arc oxidation treated Ti–6Al–4V alloy prepared by SEBM and SLM. J Iron Steel Res Int . [DOI: 10.1007/s42243-022-00800-9] [Reference Citation Analysis]
6 Ibrahim MK, Kaba M, Muhaffel F, Ağaoğulları D, Cimenoglu H. Thermal oxidation of a porous Ti 23Nb alloy for wear related biomedical applications: Effect of oxidation duration. Surface and Coatings Technology 2022;439:128429. [DOI: 10.1016/j.surfcoat.2022.128429] [Reference Citation Analysis]
7 Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Front Bioeng Biotechnol 2022;10:888084. [DOI: 10.3389/fbioe.2022.888084] [Reference Citation Analysis]
8 Liu Y, Zhang WS, Tang ZH, Zhang SM, Qiu J. The potential influence of high uric acid exposure on surface and corrosion susceptibility of pure titanium. J Mater Sci Mater Med 2022;33:44. [PMID: 35575837 DOI: 10.1007/s10856-022-06667-2] [Reference Citation Analysis]
9 Sun H, Yang Y, Yu L, Liu K, Fei Y, Guo C, Zhou Y, Hu J, Shi L, Ji H. Inhibition of Inflammatory Response and Promotion of Osteogenic Activity of Zinc-Doped Micro-Arc Titanium Oxide Coatings. ACS Omega 2022;7:14920-32. [PMID: 35557686 DOI: 10.1021/acsomega.2c00579] [Reference Citation Analysis]
10 Sunil BR, Kranthi Kiran AS, Ramakrishna S. Surface functionalized titanium with enhanced bioactivity and antimicrobial properties through surface engineering strategies for bone implant applications. Current Opinion in Biomedical Engineering 2022. [DOI: 10.1016/j.cobme.2022.100398] [Reference Citation Analysis]
11 Qiu L, Zhu Z, Peng F, Zhang C, Xie J, Zhou R, Zhang Y, Li M. Li-Doped Ti Surface for the Improvement of Osteointegration. ACS Omega 2022;7:12030-8. [PMID: 35449902 DOI: 10.1021/acsomega.2c00229] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Araujo AF, Ferreira MV, Felisberto MD, Sicupira DC, Santos LA. Corrosion resistance of a superelastic NiTi alloy coated with graphene–based coatings. Progress in Organic Coatings 2022;165:106727. [DOI: 10.1016/j.porgcoat.2022.106727] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Gautam S, Bhatnagar D, Bansal D, Batra H, Goyal N. Recent advancements in nanomaterials for biomedical implants. Biomedical Engineering Advances 2022. [DOI: 10.1016/j.bea.2022.100029] [Reference Citation Analysis]
14 Więckowski W, Motyka M, Adamus J, Lacki P, Dyner M. Numerical and Experimental Analysis of Titanium Sheet Forming for Medical Instrument Parts. Materials 2022;15:1735. [DOI: 10.3390/ma15051735] [Reference Citation Analysis]
15 Sun L, Chen X, Mu H, Xu Y, Chen R, Xia R, Xia L, Zhang S. Titanium Nanobowl-Based Nest-Like Nanofiber Structure Prepared at Room Temperature and Pressure Promotes Osseointegration of Beagle Implants. Front Bioeng Biotechnol 2022;10:841591. [DOI: 10.3389/fbioe.2022.841591] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Davis R, Singh A, Jackson MJ, Coelho RT, Prakash D, Charalambous CP, Ahmed W, da Silva LRR, Lawrence AA. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int J Adv Manuf Technol. [DOI: 10.1007/s00170-022-08770-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
17 Barão VAR, Costa RC, Shibli JA, Bertolini M, Souza JGS. Emerging titanium surface modifications: The war against polymicrobial infections on dental implants. Braz Dent J 2022;33:1-12. [DOI: 10.1590/0103-6440202204860] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Akbari Edgahi M, Naghib SM, Emamian A, Ramezanpour H, Haghiralsadat F, Tofighi D. A practical review over surface modification, nanopatterns, emerging materials, drug delivery systems, and their biophysiochemical properties for dental implants: Recent progresses and advances. Nanotechnology Reviews 2022;11:637-79. [DOI: 10.1515/ntrev-2022-0037] [Reference Citation Analysis]
19 Vranceanu DM, Ungureanu E, Ionescu IC, Parau AC, Kiss AE, Vladescu A, Cotrut CM. Electrochemical Surface Biofunctionalization of Titanium through Growth of TiO2 Nanotubes and Deposition of Zn Doped Hydroxyapatite. Coatings 2022;12:69. [DOI: 10.3390/coatings12010069] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
20 Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X, Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021;9:783816. [PMID: 34950645 DOI: 10.3389/fbioe.2021.783816] [Reference Citation Analysis]
21 Wang H, Yuan C, Lin K, Zhu R, Zhang S. Modifying a 3D-Printed Ti6Al4V Implant with Polydopamine Coating to Improve BMSCs Growth, Osteogenic Differentiation, and In Situ Osseointegration In Vivo. Front Bioeng Biotechnol 2021;9:761911. [PMID: 34926418 DOI: 10.3389/fbioe.2021.761911] [Reference Citation Analysis]
22 Davis R, Singh A, Debnath K, Sabino RM, Popat K, Soares P, Keshri AK, Borgohain B. Enhanced Micro-Electric Discharge Machining-Induced Surface Modification on Biomedical Ti-6Al-4V Alloy. Journal of Manufacturing Science and Engineering 2022;144:071002. [DOI: 10.1115/1.4053110] [Reference Citation Analysis]
23 Yang R, Yan Y, Wu Z, Wei Y, Song H, Zhu L, Zhao C, Xu N, Fu J, Huo K. Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway. Mater Sci Eng C Mater Biol Appl 2021;131:112513. [PMID: 34857292 DOI: 10.1016/j.msec.2021.112513] [Reference Citation Analysis]
24 Sun Y, Li Y, Zhang Y, Wang T, Lin K, Liu J. A polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis via FAK/MAPK and PI3K/AKT signaling pathways. Mater Sci Eng C Mater Biol Appl 2021;131:112482. [PMID: 34857268 DOI: 10.1016/j.msec.2021.112482] [Reference Citation Analysis]
25 Hong G, Liao M, Wu T, Zhou Q, Xie H, Chen C. Improving osteogenic activity of Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) surfaces by grafting of silanes with different end groups. Applied Surface Science 2021;570:151144. [DOI: 10.1016/j.apsusc.2021.151144] [Reference Citation Analysis]
26 Costa RC, Nagay BE, Bertolini M, Costa-Oliveira BE, Sampaio AA, Retamal-Valdes B, Shibli JA, Feres M, Barão VAR, Souza JGS. Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv Colloid Interface Sci 2021;298:102551. [PMID: 34757285 DOI: 10.1016/j.cis.2021.102551] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
27 Huang G, Pan ST, Qiu JX. The osteogenic effects of porous Tantalum and Titanium alloy scaffolds with different unit cell structure. Colloids Surf B Biointerfaces 2021;210:112229. [PMID: 34875470 DOI: 10.1016/j.colsurfb.2021.112229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Baltatu MS, Sandu AV, Nabialek M, Vizureanu P, Ciobanu G. Biomimetic Deposition of Hydroxyapatite Layer on Titanium Alloys. Micromachines (Basel) 2021;12:1447. [PMID: 34945297 DOI: 10.3390/mi12121447] [Reference Citation Analysis]
29 Wang X, Han X, Li C, Chen Z, Huang H, Chen J, Wu C, Fan T, Li T, Huang W, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zheng F, Al-Sehemi AG, Wang G, Xie Z, Zhang H. 2D materials for bone therapy. Adv Drug Deliv Rev 2021;178:113970. [PMID: 34509576 DOI: 10.1016/j.addr.2021.113970] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Hsu SM, Fares C, Xia X, Rasel MAJ, Ketter J, Afonso Camargo SE, Haque MA, Ren F, Esquivel-Upshaw JF. In Vitro Corrosion of SiC-Coated Anodized Ti Nano-Tubular Surfaces. J Funct Biomater 2021;12:52. [PMID: 34564201 DOI: 10.3390/jfb12030052] [Reference Citation Analysis]
31 Park J, Cimpean A, Tesler AB, Mazare A. Anodic TiO2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. Nanomaterials (Basel) 2021;11:2359. [PMID: 34578675 DOI: 10.3390/nano11092359] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
32 Tang Z, Su S, Liu Y, Zhu W, Zhang S, Qiu J. Hydrothermal Synthesis of Zinc-Incorporated Nano-Cluster Structure on Titanium Surface to Promote Osteogenic Differentiation of Osteoblasts and hMSCs. Front Mater 2021;8:739071. [DOI: 10.3389/fmats.2021.739071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Gambardella A, Marchiori G, Maglio M, Russo A, Rossi C, Visani A, Fini M. Determination of the Spatial Anisotropy of the Surface MicroStructures of Different Implant Materials: An Atomic Force Microscopy Study. Materials (Basel) 2021;14:4803. [PMID: 34500893 DOI: 10.3390/ma14174803] [Reference Citation Analysis]
34 Cozma V, Rosca I, Radulescu L, Martu C, Nastasa V, Varganici CD, Ursu EL, Doroftei F, Pinteala M, Racles C. Antibacterial Polysiloxane Polymers and Coatings for Cochlear Implants. Molecules 2021;26:4892. [PMID: 34443480 DOI: 10.3390/molecules26164892] [Reference Citation Analysis]
35 Webber LP, Chan H, Wang H. Will Zirconia Implants Replace Titanium Implants? Applied Sciences 2021;11:6776. [DOI: 10.3390/app11156776] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Zhang T, Jiang M, Yin X, Yao P, Sun H. Mechanism of Exosomes Involved in Osteoimmunity Promoting Osseointegration Around Titanium Implants With Small-Scale Topography. Front Bioeng Biotechnol 2021;9:682384. [PMID: 34336801 DOI: 10.3389/fbioe.2021.682384] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Alshammari H, Bakitian F, Neilands J, Andersen OZ, Stavropoulos A. Antimicrobial Properties of Strontium Functionalized Titanium Surfaces for Oral Applications, A Systematic Review. Coatings 2021;11:810. [DOI: 10.3390/coatings11070810] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Xu C, Xia Y, Wang L, Nan X, Hou J, Guo Y, Meng K, Lian J, Zhang Y, Wu F, Zhao B. Polydopamine-assisted immobilization of silk fibroin and its derived peptide on chemically oxidized titanium to enhance biological activity in vitro. Int J Biol Macromol 2021;185:1022-35. [PMID: 34197859 DOI: 10.1016/j.ijbiomac.2021.06.160] [Reference Citation Analysis]
39 Ferraris S, Warchomicka F, Barberi J, Cochis A, Scalia AC, Spriano S. Contact Guidance Effect and Prevention of Microfouling on a Beta Titanium Alloy Surface Structured by Electron-Beam Technology. Nanomaterials (Basel) 2021;11:1474. [PMID: 34199432 DOI: 10.3390/nano11061474] [Reference Citation Analysis]
40 Fang Y, Attarilar S, Yang Z, Wei G, Fu Y, Wang L. Toward Bactericidal Enhancement of Additively Manufactured Titanium Implants. Coatings 2021;11:668. [DOI: 10.3390/coatings11060668] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Li J, Zhou P, Attarilar S, Shi H. Innovative Surface Modification Procedures to Achieve Micro/Nano-Graded Ti-Based Biomedical Alloys and Implants. Coatings 2021;11:647. [DOI: 10.3390/coatings11060647] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
42 Paulitsch-Fuchs AH, Wolrab L, Eck N, Dyer NP, Bödendorfer B, Lohberger B. TiAl6V4 Alloy Surface Modifications and Their Impact on Biofilm Development of S. aureus and S. epidermidis. J Funct Biomater 2021;12:36. [PMID: 34069837 DOI: 10.3390/jfb12020036] [Reference Citation Analysis]
43 Zhang C, Zhang T, Geng T, Wang X, Lin K, Wang P. Dental Implants Loaded With Bioactive Agents Promote Osseointegration in Osteoporosis: A Review. Front Bioeng Biotechnol 2021;9:591796. [PMID: 33644012 DOI: 10.3389/fbioe.2021.591796] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]