BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M. Recent Advances in Understanding the Protein Corona of Nanoparticles and in the Formulation of "Stealthy" Nanomaterials. Front Bioeng Biotechnol 2020;8:166. [PMID: 32309278 DOI: 10.3389/fbioe.2020.00166] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Ma S, Gu C, Xu J, He J, Li S, Zheng H, Pang B, Wen Y, Fang Q, Liu W, Tian J. Strategy for Avoiding Protein Corona Inhibition of Targeted Drug Delivery by Linking Recombinant Affibody Scaffold to Magnetosomes. IJN 2022;Volume 17:665-80. [DOI: 10.2147/ijn.s338349] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Debnath SK, Srivastava R. Potential Application of Bionanoparticles to Treat Severe Acute Respiratory Syndrome Coronavirus-2 Infection. Front Nanotechnol 2022;3:813847. [DOI: 10.3389/fnano.2021.813847] [Reference Citation Analysis]
3 Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian Journal of Pharmaceutical Sciences 2020. [DOI: 10.1016/j.ajps.2020.07.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Popescu T, Oktaviani Matei C, Culita DC, Maraloiu VA, Rostas AM, Diamandescu L, Iacob N, Savopol T, Ilas MC, Feder M, Lupu AR, Iacoban AC, Vlaicu ID, Moisescu MG. Facile synthesis of low toxicity iron oxide/TiO2 nanocomposites with hyperthermic and photo-oxidation properties. Sci Rep 2022;12:6887. [PMID: 35477987 DOI: 10.1038/s41598-022-11003-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Diaz-Diestra DM, Palacios-Hernandez T, Liu Y, Smith DE, Nguyen AK, Todorov T, Gray PJ, Zheng J, Skoog SA, Goering PL. Impact of surface chemistry of ultrasmall superparamagnetic iron oxide nanoparticles on protein corona formation and endothelial cell uptake, toxicity, and barrier function. Toxicol Sci 2022:kfac058. [PMID: 35708658 DOI: 10.1093/toxsci/kfac058] [Reference Citation Analysis]
6 Moret F, Menilli L, Battan M, Tedesco D, Columbaro M, Guerrini A, Avancini G, Ferroni C, Varchi G. Pheophorbide A and Paclitaxel Bioresponsive Nanoparticles as Double-Punch Platform for Cancer Therapy. Pharmaceutics 2021;13:1130. [PMID: 34452091 DOI: 10.3390/pharmaceutics13081130] [Reference Citation Analysis]
7 Mathew EN, Berry BC, Yang HW, Carroll RS, Johnson MD. Delivering Therapeutics to Glioblastoma: Overcoming Biological Constraints. Int J Mol Sci 2022;23:1711. [PMID: 35163633 DOI: 10.3390/ijms23031711] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
8 Kucharz K, Kutuzov N, Zhukov O, Mathiesen Janiurek M, Lauritzen M. Shedding Light on the Blood-Brain Barrier Transport with Two-Photon Microscopy In Vivo. Pharm Res 2022. [PMID: 35578062 DOI: 10.1007/s11095-022-03266-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ghosh G, Panicker L. Protein-nanoparticle interactions and a new insight. Soft Matter 2021;17:3855-75. [PMID: 33885450 DOI: 10.1039/d0sm02050h] [Reference Citation Analysis]
10 Du C, Zhou L, Qian J, He M, Zhang ZG, Feng C, Zhang Y, Zhang R, Dong CM. Ultrasmall Zwitterionic Polypeptide-Coordinated Nanohybrids for Highly Efficient Cancer Photothermal Ferrotherapy. ACS Appl Mater Interfaces 2021;13:44002-12. [PMID: 34494817 DOI: 10.1021/acsami.1c11381] [Reference Citation Analysis]
11 Shanmugam H, Rengarajan C, Nataraj S, Sharma A. Interactions of plant food bioactives‐loaded nano delivery systems at the nano‐bio interface and its pharmacokinetics: An overview. Food Frontiers. [DOI: 10.1002/fft2.130] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 al‐Badri MA, Smith P, al‐Jamal KT, Lorenz CD. Nanomaterial Functionalization Modulates Hard Protein Corona Formation: Atomistic Simulations Applied to Graphitic Materials. Adv Materials Inter 2022;9:2101236. [DOI: 10.1002/admi.202101236] [Reference Citation Analysis]
13 Jiang Z, Chu Y, Zhan C. Protein corona: challenges and opportunities for targeted delivery of nanomedicines. Expert Opin Drug Deliv 2022;:1-14. [PMID: 35738018 DOI: 10.1080/17425247.2022.2093854] [Reference Citation Analysis]
14 Obeng EM, Fianu I, Danquah MK. Multivalent ACE2 engineering—a promising pathway for advanced coronavirus nanomedicine development. Nano Today 2022. [DOI: 10.1016/j.nantod.2022.101580] [Reference Citation Analysis]
15 Malik A, Alshehri MA, Alamery SF, Khan JM. Impact of metal nanoparticles on the structure and function of metabolic enzymes. Int J Biol Macromol 2021;188:576-85. [PMID: 34400227 DOI: 10.1016/j.ijbiomac.2021.08.073] [Reference Citation Analysis]
16 Rao C, Mishra PM, Yadav A, Nandi CK. Cancer Cell Membrane Technology for Cancer Therapy. ChemNanoMat 2020;6:1712-29. [DOI: 10.1002/cnma.202000482] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Liu S, Wang Z, Jiang X, Gan J, Tian X, Xing Z, Yan Y, Chen J, Zhang J, Wang C, Dong L. Denatured corona proteins mediate the intracellular bioactivities of nanoparticles via the unfolded protein response. Biomaterials 2021;265:120452. [PMID: 33190736 DOI: 10.1016/j.biomaterials.2020.120452] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Sharma P, Alakesh A, Jhunjhunwala S. The consequences of particle uptake on immune cells. Trends in Pharmacological Sciences 2022. [DOI: 10.1016/j.tips.2022.01.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Mukherjee A, Bisht B, Dutta S, Paul MK. Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacol Sin 2022. [PMID: 35379933 DOI: 10.1038/s41401-022-00902-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Guido C, Maiorano G, Cortese B, D'Amone S, Palamà IE. Biomimetic Nanocarriers for Cancer Target Therapy. Bioengineering (Basel) 2020;7:E111. [PMID: 32937963 DOI: 10.3390/bioengineering7030111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Pandya AD, Iversen TG, Moestue S, Grinde MT, Mørch Ý, Snipstad S, Åslund AKO, Øy GF, Kildal W, Engebråten O, Sandvig K, Skotland T, Mælandsmo GM. Biodistribution of Poly(alkyl cyanoacrylate) Nanoparticles in Mice and Effect on Tumor Infiltration of Macrophages into a Patient-Derived Breast Cancer Xenograft. Nanomaterials (Basel) 2021;11:1140. [PMID: 33924869 DOI: 10.3390/nano11051140] [Reference Citation Analysis]
22 Boehnke N, Hammond PT. Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine. JACS Au 2022;2:12-21. [DOI: 10.1021/jacsau.1c00313] [Reference Citation Analysis]
23 Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021;174:265-93. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
24 Anani T, Rahmati S, Sultana N, David AE. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics 2021;11:579-601. [PMID: 33391494 DOI: 10.7150/thno.48811] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 17.0] [Reference Citation Analysis]
25 Malik V, Ramesh A, Kulkarni AA. TLR7/8 Agonist and SHP2 Inhibitor Loaded Nanoparticle Enhances Macrophage Immunotherapy Efficacy. Adv Therap 2021;4:2100086. [DOI: 10.1002/adtp.202100086] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Etemadi H, Buchanan JK, Kandile NG, Plieger PG. Iron Oxide Nanoparticles: Physicochemical Characteristics and Historical Developments to Commercialization for Potential Technological Applications. ACS Biomater Sci Eng 2021. [PMID: 34786932 DOI: 10.1021/acsbiomaterials.1c00938] [Reference Citation Analysis]
27 Eid AM, Kraemer S, Al-abadleh HA. Surface chemistry of bovine serum albumin with hematite nanoparticles and its effect on arsenate adsorption. Environ Chem 2021;18:177. [DOI: 10.1071/en21091] [Reference Citation Analysis]
28 Bodó K, Baranzini N, Girardello R, Kokhanyuk B, Németh P, Hayashi Y, Grimaldi A, Engelmann P. Nanomaterials and Annelid Immunity: A Comparative Survey to Reveal the Common Stress and Defense Responses of Two Sentinel Species to Nanomaterials in the Environment. Biology (Basel) 2020;9:E307. [PMID: 32977601 DOI: 10.3390/biology9100307] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Costa LSD, Khan LU, Franqui LS, Delite FS, Muraca D, Martinez DST, Knobel M. Hybrid magneto-luminescent iron oxide nanocubes functionalized with europium complexes: synthesis, hemolytic properties and protein corona formation. J Mater Chem B 2021;9:428-39. [PMID: 33367419 DOI: 10.1039/d0tb02454f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Bilardo R, Traldi F, Vdovchenko A, Resmini M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;:e1788. [PMID: 35257495 DOI: 10.1002/wnan.1788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Zhang W, Cho WC, Bloukh SH, Edis Z, Du W, He Y, Hu HY, Hagen TLMT, Falahati M. An overview on the exploring the interaction of inorganic nanoparticles with microtubules for the advancement of cancer therapeutics. Int J Biol Macromol 2022:S0141-8130(22)01134-5. [PMID: 35618086 DOI: 10.1016/j.ijbiomac.2022.05.150] [Reference Citation Analysis]
32 Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022;188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Reference Citation Analysis]
33 Dabbour NM, Salama AM, Donia T, Al-deeb RT, Abd Elghane AM, Badry KH, Loutfy SA. Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. Journal of Drug Delivery Science and Technology 2022;67:103022. [DOI: 10.1016/j.jddst.2021.103022] [Reference Citation Analysis]
34 Tomak A, Cesmeli S, Hanoglu BD, Winkler D, Oksel Karakus C. Nanoparticle-protein corona complex: understanding multiple interactions between environmental factors, corona formation, and biological activity. Nanotoxicology 2022;:1-27. [PMID: 35061957 DOI: 10.1080/17435390.2022.2025467] [Reference Citation Analysis]
35 Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet 2022. [PMID: 34983972 DOI: 10.1038/s41576-021-00439-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 23.0] [Reference Citation Analysis]
36 Ruchika, Sharma A, Saneja A. Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.02.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Pariente A, Peled E, Zlotver I, Sosnik A. Hybrid amorphous TiO2/polymer nanomaterials trigger apoptosis of pediatric cancer cells upon ultrasound irradiation. Materials Today Chemistry 2021;22:100613. [DOI: 10.1016/j.mtchem.2021.100613] [Reference Citation Analysis]
38 Srinivas M, Sharma P, Jhunjhunwala S. Phagocytic Uptake of Polymeric Particles by Immune Cells under Flow Conditions. Mol Pharm 2021;18:4501-10. [PMID: 34748349 DOI: 10.1021/acs.molpharmaceut.1c00698] [Reference Citation Analysis]
39 Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021;14:41. [PMID: 35056937 DOI: 10.3390/pharmaceutics14010041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
40 Breznica P, Koliqi R, Daka A. A review of the current understanding of nanoparticles protein corona composition. Med Pharm Rep 2020;93:342-50. [PMID: 33225259 DOI: 10.15386/mpr-1756] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Böttger R, Pauli G, Chao PH, Al Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020;154-155:79-101. [PMID: 32574575 DOI: 10.1016/j.addr.2020.06.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
42 Brannon ER, Guevara MV, Pacifici NJ, Lee JK, Lewis JS, Eniola-adefeso O. Polymeric particle-based therapies for acute inflammatory diseases. Nat Rev Mater. [DOI: 10.1038/s41578-022-00458-5] [Reference Citation Analysis]
43 Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. Nanoscale Adv 2022;4:634-53. [DOI: 10.1039/d1na00810b] [Reference Citation Analysis]
44 Mosselhy DA, Virtanen J, Kant R, He W, Elbahri M, Sironen T. COVID-19 Pandemic: What about the Safety of Anti-Coronavirus Nanoparticles? Nanomaterials (Basel) 2021;11:796. [PMID: 33808934 DOI: 10.3390/nano11030796] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Friedl JD, Nele V, De Rosa G, Bernkop‐schnürch A. Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Adv Funct Materials 2021;31:2103347. [DOI: 10.1002/adfm.202103347] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
46 Petersen EJ, Ceger P, Allen DG, Coyle J, Derk R, Garcia-Reyero N, Gordon J, Kleinstreuer NC, Matheson J, McShan D, Nelson BC, Patri AK, Rice P, Rojanasakul L, Sasidharan A, Scarano L, Chang X. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials. ALTEX 2022;39:183–206. [PMID: 34874455 DOI: 10.14573/altex.2105041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Khan S, Sharifi M, Gleghorn JP, Babadaei MMN, Bloukh SH, Edis Z, Amin M, Bai Q, Ten Hagen TLM, Falahati M, Cho WC. Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy. J Control Release 2022:S0168-3659(22)00324-8. [PMID: 35660636 DOI: 10.1016/j.jconrel.2022.05.055] [Reference Citation Analysis]
48 Cha GD, Kang T, Baik S, Kim D, Choi SH, Hyeon T, Kim DH. Advances in drug delivery technology for the treatment of glioblastoma multiforme. J Control Release 2020;328:350-67. [PMID: 32896613 DOI: 10.1016/j.jconrel.2020.09.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
49 Adhipandito CF, Cheung SH, Lin YH, Wu SH. Atypical Renal Clearance of Nanoparticles Larger Than the Kidney Filtration Threshold. Int J Mol Sci 2021;22:11182. [PMID: 34681853 DOI: 10.3390/ijms222011182] [Reference Citation Analysis]
50 Yang Y, Ellestad KK, Singha S, Uddin MM, Clarke R, Mondal D, Garabatos N, Solé P, Fandos C, Serra P, Santamaria P. Extremely short bioavailability and fast pharmacodynamic effects of pMHC-based nanomedicines. J Control Release 2021;338:557-70. [PMID: 34474072 DOI: 10.1016/j.jconrel.2021.08.043] [Reference Citation Analysis]
51 Vidallon MLP, Teo BM, Bishop AI, Tabor RF. Next-Generation Colloidal Materials for Ultrasound Imaging Applications. Ultrasound Med Biol 2022;48:1373-96. [PMID: 35641393 DOI: 10.1016/j.ultrasmedbio.2022.04.001] [Reference Citation Analysis]
52 Ramos TI, Villacis-aguirre CA, López-aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker’s Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022;14:247. [DOI: 10.3390/pharmaceutics14020247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021;12:70. [PMID: 34940549 DOI: 10.3390/jfb12040070] [Reference Citation Analysis]
54 Mishra RK, Ahmad A, Vyawahare A, Alam P, Khan TH, Khan R. Biological effects of formation of protein corona onto nanoparticles. Int J Biol Macromol 2021;175:1-18. [PMID: 33508360 DOI: 10.1016/j.ijbiomac.2021.01.152] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
55 Medina-montano C, Rivero Berti I, Gambaro RC, Limeres MJ, Svensson M, Padula G, Chain CY, Cisneros JS, Castro GR, Grabbe S, Bros M, Gehring S, Islan GA, Cacicedo ML. Nanostructured Lipid Carriers Loaded with Dexamethasone Prevent Inflammatory Responses in Primary Non-Parenchymal Liver Cells. Pharmaceutics 2022;14:1611. [DOI: 10.3390/pharmaceutics14081611] [Reference Citation Analysis]
56 Chen SH, Bell DR, Luan B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv Drug Deliv Rev 2022;186:114336. [PMID: 35597306 DOI: 10.1016/j.addr.2022.114336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Xiao Q, Zoulikha M, Qiu M, Teng C, Lin C, Li X, Sallam MA, Xu Q, He W. The effects of protein corona on in vivo fate of nanocarriers. Adv Drug Deliv Rev 2022;186:114356. [PMID: 35595022 DOI: 10.1016/j.addr.2022.114356] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
58 Behl T, Sharma A, Sharma L, Sehgal A, Singh S, Sharma N, Zengin G, Bungau S, Toma MM, Gitea D, Babes EE, Judea Pusta CT, Bumbu AG. Current Perspective on the Natural Compounds and Drug Delivery Techniques in Glioblastoma Multiforme. Cancers (Basel) 2021;13:2765. [PMID: 34199460 DOI: 10.3390/cancers13112765] [Reference Citation Analysis]
59 Albalawi F, Hussein MZ, Fakurazi S, Masarudin MJ. Engineered Nanomaterials: The Challenges and Opportunities for Nanomedicines. Int J Nanomedicine 2021;16:161-84. [PMID: 33447033 DOI: 10.2147/IJN.S288236] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Meenambal R, Srinivas Bharath MM. Nanocarriers for effective nutraceutical delivery to the brain. Neurochem Int 2020;140:104851. [PMID: 32976906 DOI: 10.1016/j.neuint.2020.104851] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
61 Jahan Sajib MS, Sarker P, Wei Y, Tao X, Wei T. Protein Corona on Gold Nanoparticles Studied with Coarse-Grained Simulations. Langmuir 2020;36:13356-63. [PMID: 33124831 DOI: 10.1021/acs.langmuir.0c02767] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
62 Gessner I. Optimizing nanoparticle design and surface modification toward clinical translation. MRS Bull 2021;:1-7. [PMID: 34305307 DOI: 10.1557/s43577-021-00132-1] [Reference Citation Analysis]
63 Paliienko K, Pastukhov A, Babič M, Horák D, Vasylchenko O, Borisova T. Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals. Beilstein J Nanotechnol 2020;11:1381-93. [PMID: 32974116 DOI: 10.3762/bjnano.11.122] [Reference Citation Analysis]
64 Kenry, Nicolson F, Clark L, Panikkanvalappil SR, Andreiuk B, Andreou C. Advances in Surface Enhanced Raman Spectroscopy for in Vivo Imaging in Oncology. Nanotheranostics 2022;6:31-49. [PMID: 34976579 DOI: 10.7150/ntno.62970] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Euro J of Inorganic Chem. [DOI: 10.1002/ejic.202200215] [Reference Citation Analysis]
66 de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021;29:808-21. [PMID: 33645369 DOI: 10.1080/1061186X.2021.1892121] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
67 Ezzat AA, Tammam SN, Hanafi RS, Rashad O, Osama A, Abdelnaby E, Magdeldin S, Mansour S. Different Serum, Different Protein Corona! The Impact of the Serum Source on Cellular Targeting of Folic Acid-Modified Chitosan-Based Nanoparticles. Mol Pharm 2022. [PMID: 35380849 DOI: 10.1021/acs.molpharmaceut.2c00108] [Reference Citation Analysis]
68 Kruszewska J, Zajda J, Matczuk M. How to effectively prepare a sample for bottom-up proteomic analysis of nanoparticle protein corona? A critical review. Talanta 2021;226:122153. [PMID: 33676702 DOI: 10.1016/j.talanta.2021.122153] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Ramesh A, Malik V, Ranjani HA, Smith H, Kulkarni AA. Rational combination of an immune checkpoint inhibitor with CSF1R inhibitor-loaded nanoparticle enhances anticancer efficacy. Drug Deliv Transl Res 2021. [PMID: 34365577 DOI: 10.1007/s13346-021-01040-2] [Reference Citation Analysis]
70 Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021;134:57-78. [PMID: 34364016 DOI: 10.1016/j.actbio.2021.07.074] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
71 Caprifico AE, Foot PJS, Polycarpou E, Calabrese G. Overcoming the protein corona in chitosan-based nanoparticles. Drug Discov Today 2021;26:1825-40. [PMID: 33892141 DOI: 10.1016/j.drudis.2021.04.014] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Gonzalez Solveyra E, Thompson DH, Szleifer I. Proteins Adsorbing onto Surface-Modified Nanoparticles: Effect of Surface Curvature, pH, and the Interplay of Polymers and Proteins Acid-Base Equilibrium. Polymers (Basel) 2022;14:739. [PMID: 35215653 DOI: 10.3390/polym14040739] [Reference Citation Analysis]
73 Mokhtari‐farsani A, Hasany M, Lynch I, Mehrali M. Biodegradation of Carbon‐Based Nanomaterials: The Importance of “Biomolecular Corona” Consideration. Adv Funct Materials 2022;32:2105649. [DOI: 10.1002/adfm.202105649] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
74 Subasic CN, Kuilamu E, Cowin G, Minchin RF, Kaminskas LM. The pharmacokinetics of PEGylated liposomal doxorubicin are not significantly affected by sex in rats or humans, but may be affected by immune dysfunction. J Control Release 2021;337:71-80. [PMID: 34245788 DOI: 10.1016/j.jconrel.2021.07.006] [Reference Citation Analysis]
75 MacCormack TJ, Meli MV, Ede JD, Ong KJ, Rourke JL, Dieni CA. Commentary: Revisiting nanoparticle-assay interference: There's plenty of room at the bottom for misinterpretation. Comp Biochem Physiol B Biochem Mol Biol 2021;255:110601. [PMID: 33857590 DOI: 10.1016/j.cbpb.2021.110601] [Reference Citation Analysis]
76 Kimura S, Harashima H. Current Status and Challenges Associated with CNS-Targeted Gene Delivery across the BBB. Pharmaceutics 2020;12:E1216. [PMID: 33334049 DOI: 10.3390/pharmaceutics12121216] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
77 Ezhilarasan D, Lakshmi T, Mallineni SK. Nano-based targeted drug delivery for lung cancer: therapeutic avenues and challenges. Nanomedicine. [DOI: 10.2217/nnm-2021-0364] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
78 Mills R, Vogler RJ, Bernard M, Concolino J, Hersh LB, Wei Y, Hastings JT, Dziubla T, Baldridge KC, Bhattacharyya D. Aerosol capture and coronavirus spike protein deactivation by enzyme functionalized antiviral membranes. Commun Mater 2022;3. [DOI: 10.1038/s43246-022-00256-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 González-vega JG, García-ramos JC, Chavez-santoscoy RA, Castillo-quiñones JE, Arellano-garcia ME, Toledano-magaña Y. Lung Models to Evaluate Silver Nanoparticles’ Toxicity and Their Impact on Human Health. Nanomaterials 2022;12:2316. [DOI: 10.3390/nano12132316] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Martín-contreras M, Navarro-marchal SA, Peula-garcía JM, Jódar-reyes AB. Progress and Hurdles of Therapeutic Nanosystems against Cancer. Pharmaceutics 2022;14:388. [DOI: 10.3390/pharmaceutics14020388] [Reference Citation Analysis]
81 Portilla Y, Mulens-Arias V, Paradela A, Ramos-Fernández A, Pérez-Yagüe S, Morales MP, Barber DF. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Biomaterials 2022;281:121365. [PMID: 35038611 DOI: 10.1016/j.biomaterials.2022.121365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
82 Tomak A, Yilancioglu B, Winkler D, Karakus CO. Protein corona formation on silver nanoparticles under different conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;651:129666. [DOI: 10.1016/j.colsurfa.2022.129666] [Reference Citation Analysis]
83 Vlatkovic I. Non-Immunotherapy Application of LNP-mRNA: Maximizing Efficacy and Safety. Biomedicines 2021;9:530. [PMID: 34068715 DOI: 10.3390/biomedicines9050530] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
84 Terracciano R, Zhang A, Butler EB, Demarchi D, Hafner JH, Grattoni A, Filgueira CS. Effects of Surface Protein Adsorption on the Distribution and Retention of Intratumorally Administered Gold Nanoparticles. Pharmaceutics 2021;13:216. [PMID: 33562434 DOI: 10.3390/pharmaceutics13020216] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Huang W, Xiao G, Zhang Y, Min W. Research progress and application opportunities of nanoparticle-protein corona complexes. Biomed Pharmacother 2021;139:111541. [PMID: 33848776 DOI: 10.1016/j.biopha.2021.111541] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
86 Gunathilake TMSU, Ching YC, Uyama H, Nguyen DH, Chuah CH. Investigations on the interactions of proteins with nanocellulose produced via sulphuric acid hydrolysis. Int J Biol Macromol 2021:S0141-8130(21)02380-1. [PMID: 34740692 DOI: 10.1016/j.ijbiomac.2021.10.215] [Reference Citation Analysis]
87 Sharifi E, Bigham A, Yousefiasl S, Trovato M, Ghomi M, Esmaeili Y, Samadi P, Zarrabi A, Ashrafizadeh M, Sharifi S, Sartorius R, Dabbagh Moghaddam F, Maleki A, Song H, Agarwal T, Maiti TK, Nikfarjam N, Burvill C, Mattoli V, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L, Makvandi P. Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation. Adv Sci (Weinh) 2022;9:e2102678. [PMID: 34796680 DOI: 10.1002/advs.202102678] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
88 Nkanga CI, Chung YH, Shukla S, Zhou J, Jokerst JV, Steinmetz NF. The in vivo fate of tobacco mosaic virus nanoparticle theranostic agents modified by the addition of a polydopamine coat. Biomater Sci 2021;9:7134-50. [PMID: 34591046 DOI: 10.1039/d1bm01113h] [Reference Citation Analysis]
89 Yang JJ, Narayanamurthy R, Yager JY, Unsworth LD. How does biological sex affect the physiological response to nanomaterials? Nano Today 2021;41:101292. [DOI: 10.1016/j.nantod.2021.101292] [Reference Citation Analysis]