BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Caddeo S, Boffito M, Sartori S. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Front Bioeng Biotechnol 2017;5:40. [PMID: 28798911 DOI: 10.3389/fbioe.2017.00040] [Cited by in Crossref: 77] [Cited by in F6Publishing: 57] [Article Influence: 15.4] [Reference Citation Analysis]
Number Citing Articles
1 Mowbray M, Savage T, Wu C, Song Z, Cho BA, Del Rio-chanona EA, Zhang D. Machine learning for biochemical engineering: A review. Biochemical Engineering Journal 2021;172:108054. [DOI: 10.1016/j.bej.2021.108054] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
2 da Silva Morais A, Oliveira JM, Reis RL. Biomaterials and Microfluidics for Liver Models. In: Oliveira JM, Reis RL, editors. Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models. Cham: Springer International Publishing; 2020. pp. 65-86. [DOI: 10.1007/978-3-030-36588-2_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Faria J, Gerritsen KGF, Nguyen TQ, Mihaila SM, Masereeuw R. Diabetic proximal tubulopathy: Can we mimic the disease for in vitro screening of SGLT inhibitors? Eur J Pharmacol 2021;908:174378. [PMID: 34303664 DOI: 10.1016/j.ejphar.2021.174378] [Reference Citation Analysis]
4 Singh YP, Moses JC, Bhardwaj N, Mandal BB. Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics - The Promises and Prospects of In Vitro Models. Adv Healthc Mater 2021;:e2100961. [PMID: 34302436 DOI: 10.1002/adhm.202100961] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Facchin F, Bianconi E, Canaider S, Basoli V, Biava PM, Ventura C. Tissue Regeneration without Stem Cell Transplantation: Self-Healing Potential from Ancestral Chemistry and Physical Energies. Stem Cells Int 2018;2018:7412035. [PMID: 30057626 DOI: 10.1155/2018/7412035] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
6 Sharma Ashok Sharma S, Bashir S, Kasi R, Subramaniam RT. The significance of graphene based composite hydrogels as smart materials: A review on the fabrication, properties, and its applications. FlatChem 2022. [DOI: 10.1016/j.flatc.2022.100352] [Reference Citation Analysis]
7 Karabıyık Acar Ö, Bedir S, Kayitmazer AB, Kose GT. Chondro-inductive hyaluronic acid/chitosan coacervate-based scaffolds for cartilage tissue engineering. Int J Biol Macromol 2021;188:300-12. [PMID: 34358603 DOI: 10.1016/j.ijbiomac.2021.07.176] [Reference Citation Analysis]
8 Tangchitphisut P, Srikaew N, Phongkitkarun S, Jaovisidha S, Tawonsawatruk T. Using iron sucrose-labeled adipose-derived mesenchymal stem cells in 1.5 and 3 T MRI tracking: An in vitro study. Heliyon 2020;6:e04582. [PMID: 32775748 DOI: 10.1016/j.heliyon.2020.e04582] [Reference Citation Analysis]
9 Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol 2018;45:599-614. [PMID: 29552703 DOI: 10.1007/s10295-018-2027-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
10 Hammel JH, Zatorski JM, Cook SR, Pompano RR, Munson JM. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114111] [Reference Citation Analysis]
11 Contessi Negrini N, Angelova Volponi A, Higgins CA, Sharpe PT, Celiz AD. Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Mater Today Bio 2021;10:100107. [PMID: 33889838 DOI: 10.1016/j.mtbio.2021.100107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Shahin-Shamsabadi A, Selvaganapathy PR. Tissue-in-a-Tube: three-dimensional in vitro tissue constructs with integrated multimodal environmental stimulation. Mater Today Bio 2020;7:100070. [PMID: 32875285 DOI: 10.1016/j.mtbio.2020.100070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies. Front Bioeng Biotechnol 2022;10:824156. [DOI: 10.3389/fbioe.2022.824156] [Reference Citation Analysis]
14 Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021;333:448-86. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Reference Citation Analysis]
15 Yang W, Chen Q, Xia R, Zhang Y, Shuai L, Lai J, You X, Jiang Y, Bie P, Zhang L, Zhang H, Bai L. A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation. Biomaterials 2018;177:52-66. [PMID: 29885586 DOI: 10.1016/j.biomaterials.2018.05.026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
16 Cengiz IF, Pereira H, de Girolamo L, Cucchiarini M, Espregueira-Mendes J, Reis RL, Oliveira JM. Orthopaedic regenerative tissue engineering en route to the holy grail: disequilibrium between the demand and the supply in the operating room. J Exp Orthop 2018;5:14. [PMID: 29790042 DOI: 10.1186/s40634-018-0133-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
17 Colucci F, Mancini V, Mattu C, Boffito M. Designing Multifunctional Devices for Regenerative Pharmacology Based on 3D Scaffolds, Drug-Loaded Nanoparticles, and Thermosensitive Hydrogels: A Proof-of-Concept Study. Pharmaceutics 2021;13:464. [PMID: 33808138 DOI: 10.3390/pharmaceutics13040464] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 McGivern S, Boutouil H, Al-Kharusi G, Little S, Dunne NJ, Levingstone TJ. Translational Application of 3D Bioprinting for Cartilage Tissue Engineering. Bioengineering (Basel) 2021;8:144. [PMID: 34677217 DOI: 10.3390/bioengineering8100144] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Contessi Negrini N, Ricci C, Bongiorni F, Trombi L, D’alessandro D, Danti S, Farè S. An Osteosarcoma Model by 3D Printed Polyurethane Scaffold and In Vitro Generated Bone Extracellular Matrix. Cancers 2022;14:2003. [DOI: 10.3390/cancers14082003] [Reference Citation Analysis]
20 Rosendahl J, Svanström A, Berglin M, Petronis S, Bogestål Y, Stenlund P, Standoft S, Ståhlberg A, Landberg G, Chinga-Carrasco G, Håkansson J. 3D Printed Nanocellulose Scaffolds as a Cancer Cell Culture Model System. Bioengineering (Basel) 2021;8:97. [PMID: 34356204 DOI: 10.3390/bioengineering8070097] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Bhide P, Zellner J, Angele P. Biologische Therapie der Gelenkarthrose: Wo stehen wir heute? Arthroskopie 2020;33:228-38. [DOI: 10.1007/s00142-020-00363-5] [Reference Citation Analysis]
22 Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2020;8:620962. [PMID: 33585419 DOI: 10.3389/fbioe.2020.620962] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
23 Joseph J, Parameswaran R, Gopalakrishna Panicker U. Recent advancements in blended and reinforced polymeric systems as bioscaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2066666] [Reference Citation Analysis]
24 Polonchuk L, Surija L, Lee MH, Sharma P, Liu Chung Ming C, Richter F, Ben-Sefer E, Rad MA, Mahmodi Sheikh Sarmast H, Shamery WA, Tran HA, Vettori L, Haeusermann F, Filipe EC, Rnjak-Kovacina J, Cox T, Tipper J, Kabakova I, Gentile C. Towards engineering heart tissues from bioprinted cardiac spheroids. Biofabrication 2021;13. [PMID: 34265755 DOI: 10.1088/1758-5090/ac14ca] [Reference Citation Analysis]
25 Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev 2018;132:235-51. [PMID: 29935988 DOI: 10.1016/j.addr.2018.06.011] [Cited by in Crossref: 136] [Cited by in F6Publishing: 109] [Article Influence: 34.0] [Reference Citation Analysis]
26 Vozzi F, Logrand F, Cabiati M, Cicione C, Boffito M, Carmagnola I, Vitale N, Gori M, Brancaccio M, Del Ry S, Gastaldi D, Cattarinuzzi E, Vena P, Rainer A, Domenici C, Ciardelli G, Sartori S. Biomimetic engineering of the cardiac tissue through processing, functionalization, and biological characterization of polyester urethanes. Biomed Mater 2018;13:055006. [PMID: 29869614 DOI: 10.1088/1748-605X/aaca5b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
27 Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Front Bioeng Biotechnol 2018;6:154. [PMID: 30430109 DOI: 10.3389/fbioe.2018.00154] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
28 Khoramgah MS, Ranjbari J, Abbaszadeh HA, Tabatabaei Mirakabad FS, Hatami S, Hosseinzadeh S, Ghanbarian H. Freeze-dried multiscale porous nanofibrous three dimensional scaffolds for bone regenerations. Bioimpacts 2020;10:73-85. [PMID: 32363151 DOI: 10.34172/bi.2020.10] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
29 Ghanbari E, Mehdipour A, Khazaei M, Khoshfeterat AB, Niknafs B. A review of recent advances on osteogenic applications of Silk fibroin as a potential bio-scaffold in bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2032707] [Reference Citation Analysis]
30 Weinhart M, Hocke A, Hippenstiel S, Kurreck J, Hedtrich S. 3D organ models-Revolution in pharmacological research? Pharmacol Res 2019;139:446-51. [PMID: 30395949 DOI: 10.1016/j.phrs.2018.11.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
31 Strauß S, Schroth B, Hubbuch J. Evaluation of the Reproducibility and Robustness of Extrusion-Based Bioprinting Processes Applying a Flow Sensor. Front Bioeng Biotechnol 2022;10:831350. [DOI: 10.3389/fbioe.2022.831350] [Reference Citation Analysis]
32 Nantavisai S, Egusa H, Osathanon T, Sawangmake C. Mesenchymal stem cell-based bone tissue engineering for veterinary practice. Heliyon 2019;5:e02808. [PMID: 31844733 DOI: 10.1016/j.heliyon.2019.e02808] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
33 Raafat AI, Kamal H, Sharada HM, Abd elhalim SA, Mohamed RD. Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study. J Inorg Organomet Polym 2020;30:2890-906. [DOI: 10.1007/s10904-019-01418-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Sanches PL, Geaquinto LRO, Cruz R, Schuck DC, Lorencini M, Granjeiro JM, Ribeiro ARL. Toxicity Evaluation of TiO2 Nanoparticles on the 3D Skin Model: A Systematic Review. Front Bioeng Biotechnol 2020;8:575. [PMID: 32587852 DOI: 10.3389/fbioe.2020.00575] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
35 Carranza-Rosales P, Guzmán-Delgado NE, Carranza-Torres IE, Viveros-Valdez E, Morán-Martínez J. Breast Organotypic Cancer Models. Curr Top Microbiol Immunol 2018. [PMID: 29556825 DOI: 10.1007/82_2018_86] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Hsieh MK, Wu CJ, Chen CC, Tsai TT, Niu CC, Wu SC, Lai PL. BMP-2 gene transfection of bone marrow stromal cells to induce osteoblastic differentiation in a rat calvarial defect model. Mater Sci Eng C Mater Biol Appl 2018;91:806-16. [PMID: 30033316 DOI: 10.1016/j.msec.2018.06.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
37 Tozzi L, Laurent PA, Di Buduo CA, Mu X, Massaro A, Bretherton R, Stoppel W, Kaplan DL, Balduini A. Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials 2018;178:122-33. [PMID: 29920404 DOI: 10.1016/j.biomaterials.2018.06.018] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
38 Milojević M, Rožanc J, Vajda J, Činč Ćurić L, Paradiž E, Stožer A, Maver U, Vihar B. In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021;9:1415. [PMID: 34680532 DOI: 10.3390/biomedicines9101415] [Reference Citation Analysis]
39 Rogulska OY, Trufanova NA, Petrenko YA, Repin NV, Grischuk VP, Ashukina NO, Bondarenko SY, Ivanov GV, Podorozhko EA, Lozinsky VI, Petrenko AY. Generation of bone grafts using cryopreserved mesenchymal stromal cells and macroporous collagen-nanohydroxyapatite cryogels. J Biomed Mater Res B Appl Biomater 2021. [PMID: 34387944 DOI: 10.1002/jbm.b.34927] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Wang J, Khodabukus A, Rao L, Vandusen K, Abutaleb N, Bursac N. Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 2019;221:119416. [PMID: 31419653 DOI: 10.1016/j.biomaterials.2019.119416] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
41 Khalighi S, Saadatmand M. Bioprinting a thick and cell-laden partially oxidized alginate-gelatin scaffold with embedded micro-channels as future soft tissue platform. Int J Biol Macromol 2021:S0141-8130(21)02444-2. [PMID: 34800519 DOI: 10.1016/j.ijbiomac.2021.11.046] [Reference Citation Analysis]
42 Kumari S, Mondal P, Chatterjee K. Digital light processing-based 3D bioprinting of κ-carrageenan hydrogels for engineering cell-loaded tissue scaffolds. Carbohydrate Polymers 2022;290:119508. [DOI: 10.1016/j.carbpol.2022.119508] [Reference Citation Analysis]
43 Girão AF, Wieringa P, Pinto SC, Marques PAAP, Micera S, van Wezel R, Ahmed M, Truckenmueller R, Moroni L. Ultraviolet Functionalization of Electrospun Scaffolds to Activate Fibrous Runways for Targeting Cell Adhesion. Front Bioeng Biotechnol 2019;7:159. [PMID: 31297371 DOI: 10.3389/fbioe.2019.00159] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
44 Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D Printing of Pharmaceutical Application: Drug Screening and Drug Delivery. Pharmaceutics 2021;13:1373. [PMID: 34575448 DOI: 10.3390/pharmaceutics13091373] [Reference Citation Analysis]
45 Saini G, Segaran N, Mayer JL, Saini A, Albadawi H, Oklu R. Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine. J Clin Med 2021;10:4966. [PMID: 34768485 DOI: 10.3390/jcm10214966] [Reference Citation Analysis]
46 Kara A, Koçtürk S, Bilici G, Havitcioglu H. Development of biological meniscus scaffold: Decellularization method and recellularization with meniscal cell population derived from mesenchymal stem cells. J Biomater Appl 2021;35:1192-207. [PMID: 33444085 DOI: 10.1177/0885328220981189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Borciani G, Montalbano G, Baldini N, Cerqueni G, Vitale-Brovarone C, Ciapetti G. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater 2020;108:22-45. [PMID: 32251782 DOI: 10.1016/j.actbio.2020.03.043] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 10.5] [Reference Citation Analysis]
48 Holjevac Grgurić T, Mijović B, Zdraveva E, Govorčin Bajsić E, Slivac I, Ujčić M, Dekaris I, Tominac Trcin M, Vuković A, Kuzmić S, Ledić A, Čop MJ, Logarušić M. Electrospinning of PCL/CEFUROXIM® fibrous scaffolds on 3D printed collectors. The Journal of The Textile Institute 2020;111:1288-99. [DOI: 10.1080/00405000.2019.1707347] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Wang X, Wang Z, Zhai W, Wang F, Ge Z, Yu H, Yang W. Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects. Micromachines (Basel) 2021;13:75. [PMID: 35056239 DOI: 10.3390/mi13010075] [Reference Citation Analysis]
50 Klimek K, Ginalska G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications-A Review. Polymers (Basel) 2020;12:E844. [PMID: 32268607 DOI: 10.3390/polym12040844] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
51 Stamnitz S, Klimczak A. Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells 2021;10:1925. [PMID: 34440694 DOI: 10.3390/cells10081925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Chae S, Kim J, Yi H, Cho D. 3D Bioprinting of an In Vitro Model of a Biomimetic Urinary Bladder with a Contract-Release System. Micromachines 2022;13:277. [DOI: 10.3390/mi13020277] [Reference Citation Analysis]
53 Giannini C, Terzi A, Fusaro L, Sibillano T, Diaz A, Ramella M, Lutz-Bueno V, Boccafoschi F, Bunk O. Scanning X-ray microdiffraction of decellularized pericardium tissue at increasing glucose concentration. J Biophotonics 2019;12:e201900106. [PMID: 31211508 DOI: 10.1002/jbio.201900106] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
54 Aiman AR, Vigneswari S, Amran NA, Murugaiyah V, Amirul A, Ramakrishna S. Advancing Regenerative Medicine Through the Development of Scaffold, Cell Biology, Biomaterials and Strategies of Smart Material. Regen Eng Transl Med . [DOI: 10.1007/s40883-021-00227-w] [Reference Citation Analysis]
55 Sieberath A, Della Bella E, Ferreira AM, Gentile P, Eglin D, Dalgarno K. A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. Int J Mol Sci 2020;21:E912. [PMID: 32019244 DOI: 10.3390/ijms21030912] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
56 Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021;9:651164. [PMID: 34012963 DOI: 10.3389/fcell.2021.651164] [Reference Citation Analysis]
57 Chae S, Cho D. Three-dimensional bioprinting with decellularized extracellular matrix-based bioinks in translational regenerative medicine. MRS Bulletin. [DOI: 10.1557/s43577-021-00260-8] [Reference Citation Analysis]
58 Kim K, Bou-Ghannam S, Okano T. Cell sheet tissue engineering for scaffold-free three-dimensional (3D) tissue reconstruction. Methods Cell Biol 2020;157:143-67. [PMID: 32334713 DOI: 10.1016/bs.mcb.2019.11.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
59 Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel) 2021;13:1105. [PMID: 33808492 DOI: 10.3390/polym13071105] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
60 Shima A, Morimoto Y, Sweeney HL, Takeuchi S. Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line. Experimental Cell Research 2018;370:168-73. [DOI: 10.1016/j.yexcr.2018.06.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
61 Parchehbaf-kashani M, Sepantafar M, Talkhabi M, Sayahpour FA, Baharvand H, Pahlavan S, Rajabi S. Design and characterization of an electroconductive scaffold for cardiomyocytes based biomedical assays. Materials Science and Engineering: C 2020;109:110603. [DOI: 10.1016/j.msec.2019.110603] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
62 Shahin-shamsabadi A, Selvaganapathy PR. ExCeL: combining extrusion printing on cellulose scaffolds with lamination to create in vitro biological models. Biofabrication 2019;11:035002. [DOI: 10.1088/1758-5090/ab0798] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
63 Dabaghi M, Saraei N, Carpio MB, Nanduri V, Ungureanu J, Babi M, Chandiramohan A, Noble A, Revill SD, Zhang B, Ask K, Kolb M, Shargall Y, Moran-Mirabal J, Hirota JA. A Robust Protocol for Decellularized Human Lung Bioink Generation Amenable to 2D and 3D Lung Cell Culture. Cells 2021;10:1538. [PMID: 34207111 DOI: 10.3390/cells10061538] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Estermann M, Spiaggia G, Septiadi D, Dijkhoff IM, Drasler B, Petri-Fink A, Rothen-Rutishauser B. Design of Perfused PTFE Vessel-Like Constructs for In Vitro Applications. Macromol Biosci 2021;21:e2100016. [PMID: 33624920 DOI: 10.1002/mabi.202100016] [Reference Citation Analysis]
65 Moysidou CM, Owens RM. Advances in modelling the human microbiome-gut-brain axis in vitro. Biochem Soc Trans 2021;49:187-201. [PMID: 33544117 DOI: 10.1042/BST20200338] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Toong DWY, Toh HW, Ng JCK, Wong PEH, Leo HL, Venkatraman S, Tan LP, Ang HY, Huang Y. Bioresorbable Polymeric Scaffold in Cardiovascular Applications. Int J Mol Sci 2020;21:E3444. [PMID: 32414114 DOI: 10.3390/ijms21103444] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
67 Dayekh K, Mequanint K. The effects of progenitor and differentiated cells on ectopic calcification of engineered vascular tissues. Acta Biomater 2020;115:288-98. [PMID: 32853805 DOI: 10.1016/j.actbio.2020.08.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
68 Moradi SL, Golchin A, Hajishafieeha Z, Khani M, Ardeshirylajimi A. Bone tissue engineering: Adult stem cells in combination with electrospun nanofibrous scaffolds. J Cell Physiol 2018;233:6509-22. [DOI: 10.1002/jcp.26606] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 13.3] [Reference Citation Analysis]
69 Zhang NN, Guo WH, Hu H, Zhou AR, Liu QP, Zheng BD, Zeng SX. Effect of A Polyphenol-Rich Canarium album Extract on the Composition of the Gut Microbiota of Mice Fed a High-Fat Diet. Molecules 2018;23:E2188. [PMID: 30200213 DOI: 10.3390/molecules23092188] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
70 Nune M, Bhat M, Nagarajan A. Design of ECM Functionalized Polycaprolactone Aligned Nanofibers for Peripheral Nerve Tissue Engineering. J Med Biol Eng . [DOI: 10.1007/s40846-022-00699-3] [Reference Citation Analysis]
71 Glinkowska Mares A, Feiner-gracia N, Muela Y, Martínez G, Delgado L, Albertazzi L, Pujals S. Towards Cellular Ultrastructural Characterization in Organ-on-a-Chip by Transmission Electron Microscopy. Applied Nano 2021;2:289-302. [DOI: 10.3390/applnano2040021] [Reference Citation Analysis]
72 Portillo-Lara R, Spencer AR, Walker BW, Shirzaei Sani E, Annabi N. Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials 2019;198:78-94. [PMID: 30201502 DOI: 10.1016/j.biomaterials.2018.08.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
73 Vis MAM, Ito K, Hofmann S. Impact of Culture Medium on Cellular Interactions in in vitro Co-culture Systems. Front Bioeng Biotechnol 2020;8:911. [PMID: 32850750 DOI: 10.3389/fbioe.2020.00911] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
74 Chang CJ, Taniguchi A. Establishment of a Nanopatterned Renal Disease Model by Mimicking the Physical and Chemical Cues of a Diseased Mesangial Cell Microenvironment. ACS Appl Bio Mater 2021;4:1573-83. [PMID: 35014506 DOI: 10.1021/acsabm.0c01406] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
75 Roseti L, Desando G, Cavallo C, Petretta M, Grigolo B. Articular Cartilage Regeneration in Osteoarthritis. Cells 2019;8:E1305. [PMID: 31652798 DOI: 10.3390/cells8111305] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
76 Valencia L, Canalejas-Tejero V, Clemente M, Fernaud I, Holgado M, Jorcano JL, Velasco D. A new microfluidic method enabling the generation of multi-layered tissues-on-chips using skin cells as a proof of concept. Sci Rep 2021;11:13160. [PMID: 34162909 DOI: 10.1038/s41598-021-91875-z] [Reference Citation Analysis]
77 Kang D, Hong G, An S, Jang I, Yun WS, Shim JH, Jin S. Bioprinting of Multiscaled Hepatic Lobules within a Highly Vascularized Construct. Small 2020;16:e1905505. [PMID: 32078240 DOI: 10.1002/smll.201905505] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]