BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Costa JHC, Cantor MC, Neave HW. Symposium review: Precision technologies for dairy calves and management applications. J Dairy Sci 2021;104:1203-19. [PMID: 32713704 DOI: 10.3168/jds.2019-17885] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Lowe G, Sutherland M, Stewart M, Waas J, Cox N, Schütz K. Effects of drinking water provision on the behavior and growth rate of group-housed calves with different milk allowances. Journal of Dairy Science 2022. [DOI: 10.3168/jds.2021-21304] [Reference Citation Analysis]
2 Ramón-Moragues A, Carulla P, Mínguez C, Villagrá A, Estellés F. Dairy Cows Activity under Heat Stress: A Case Study in Spain. Animals (Basel) 2021;11:2305. [PMID: 34438762 DOI: 10.3390/ani11082305] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Cantor M, Costa J. Daily behavioral measures recorded by precision technology devices may indicate bovine respiratory disease status in preweaned dairy calves. Journal of Dairy Science 2022. [DOI: 10.3168/jds.2021-20798] [Reference Citation Analysis]
4 Maurmann I, Greiner BAE, von Korn S, Bernau M. Lying Behaviour in Dairy Goats: Effects of a New Automated Feeding System Assessed by Accelerometer Technology. Animals (Basel) 2021;11:2370. [PMID: 34438829 DOI: 10.3390/ani11082370] [Reference Citation Analysis]
5 Quddus RA, Ahmad N, Khalique A, Bhatti JA. Validation of NEDAP Monitoring Technology for Measurements of Feeding, Rumination, Lying, and Standing Behaviors, and Comparison with Visual Observation and Video Recording in Buffaloes. Animals 2022;12:578. [DOI: 10.3390/ani12050578] [Reference Citation Analysis]
6 Tschoner T. Methods for Pain Assessment in Calves and Their Use for the Evaluation of Pain during Different Procedures-A Review. Animals (Basel) 2021;11:1235. [PMID: 33922942 DOI: 10.3390/ani11051235] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Morrison J, Renaud DL, Churchill KJ, Costa JHC, Steele MA, Winder CB. Predicting morbidity and mortality using automated milk feeders: A scoping review. J Dairy Sci 2021;104:7177-94. [PMID: 33741152 DOI: 10.3168/jds.2020-19645] [Reference Citation Analysis]
8 Carslake C, Vázquez-Diosdado JA, Kaler J. Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving beyond Classification in Precision Livestock. Sensors (Basel) 2020;21:E88. [PMID: 33375636 DOI: 10.3390/s21010088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sun D, Webb L, van der Tol PPJ, van Reenen K. A Systematic Review of Automatic Health Monitoring in Calves: Glimpsing the Future From Current Practice. Front Vet Sci 2021;8:761468. [PMID: 34901250 DOI: 10.3389/fvets.2021.761468] [Reference Citation Analysis]
10 Conboy MH, Winder CB, Medrano-Galarza C, LeBlanc SJ, Haley DB, Costa JHC, Steele MA, Renaud DL. Associations between feeding behaviors collected from an automated milk feeder and disease in group-housed dairy calves in Ontario: A cross-sectional study. J Dairy Sci 2021;104:10183-93. [PMID: 34099289 DOI: 10.3168/jds.2021-20137] [Reference Citation Analysis]