BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lefebvre DE, Venema K, Gombau L, Valerio LG Jr, Raju J, Bondy GS, Bouwmeester H, Singh RP, Clippinger AJ, Collnot EM, Mehta R, Stone V. Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology 2015;9:523-42. [PMID: 25119418 DOI: 10.3109/17435390.2014.948091] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Butterworth PJ, Bajka BH, Edwards CH, Warren FJ, Ellis PR. Enzyme kinetic approach for mechanistic insight and predictions of in vivo starch digestibility and the glycaemic index of foods. Trends in Food Science & Technology 2022;120:254-64. [DOI: 10.1016/j.tifs.2021.11.015] [Reference Citation Analysis]
2 Gioria S, Urbán P, Hajduch M, Barboro P, Cabaleiro N, La Spina R, Chassaigne H. Proteomics study of silver nanoparticles on Caco-2 cells. Toxicol In Vitro 2018;50:347-72. [PMID: 29626626 DOI: 10.1016/j.tiv.2018.03.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
3 Ude VC, Brown DM, Viale L, Kanase N, Stone V, Johnston HJ. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration. Part Fibre Toxicol 2017;14:31. [PMID: 28835236 DOI: 10.1186/s12989-017-0211-7] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 8.4] [Reference Citation Analysis]
4 Muttakin S, Moxon TE, Gouseti O. In vivo, In vitro, and In silico Studies of the GI Tract. In: Gouseti O, Bornhorst GM, Bakalis S, Mackie A, editors. Interdisciplinary Approaches to Food Digestion. Cham: Springer International Publishing; 2019. pp. 29-67. [DOI: 10.1007/978-3-030-03901-1_3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
5 Rubio L, Marcos R, Hernández A. Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. J Toxicol Environ Health B Crit Rev 2020;23:51-68. [PMID: 31822207 DOI: 10.1080/10937404.2019.1700598] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 15.3] [Reference Citation Analysis]
6 Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Younes M, Chaudhry Q, Cubadda F, Gott D, Oomen A, Weigel S, Karamitrou M, Schoonjans R, Mortensen A; EFSA Scientific Committee. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J 2018;16:e05327. [PMID: 32625968 DOI: 10.2903/j.efsa.2018.5327] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 14.8] [Reference Citation Analysis]
7 Ude VC, Brown DM, Stone V, Johnston HJ. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. J Nanobiotechnology 2019;17:70. [PMID: 31113462 DOI: 10.1186/s12951-019-0503-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
8 Muraleetharan V, Mantaj J, Swedrowska M, Vllasaliu D. Nanoparticle modification in biological media: implications for oral nanomedicines. RSC Adv 2019;9:40487-97. [DOI: 10.1039/c9ra08403g] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
9 Kohl Y, Hesler M, Drexel R, Kovar L, Dähnhardt-Pfeiffer S, Selzer D, Wagner S, Lehr T, von Briesen H, Meier F. Influence of Physicochemical Characteristics and Stability of Gold and Silver Nanoparticles on Biological Effects and Translocation across an Intestinal Barrier-A Case Study from In Vitro to In Silico. Nanomaterials (Basel) 2021;11:1358. [PMID: 34063963 DOI: 10.3390/nano11061358] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Jain A, Ranjan S, Dasgupta N, Ramalingam C. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Critical Reviews in Food Science and Nutrition 2017;58:297-317. [DOI: 10.1080/10408398.2016.1160363] [Cited by in Crossref: 174] [Cited by in F6Publishing: 94] [Article Influence: 34.8] [Reference Citation Analysis]
11 Kazlauskaite R, Cheaib B, Heys C, Ijaz UZ, Connelly S, Sloan W, Russel J, Rubio L, Sweetman J, Kitts A, McGinnity P, Lyons P, Llewellyn M. SalmoSim: the development of a three-compartment in vitro simulator of the Atlantic salmon GI tract and associated microbial communities. Microbiome 2021;9:179. [PMID: 34465363 DOI: 10.1186/s40168-021-01134-6] [Reference Citation Analysis]
12 Laloux L, Polet M, Schneider Y. Interaction between Ingested-Engineered Nanomaterials and the Gastrointestinal Tract: In Vitro Toxicology Aspects. In: Axelos MA, Van de Voorde MH, editors. Nanotechnology in Agriculture and Food Science. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. pp. 311-32. [DOI: 10.1002/9783527697724.ch18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
13 Abdelkhaliq A, van der Zande M, Undas AK, Peters RJB, Bouwmeester H. Impact of in vitro digestion on gastrointestinal fate and uptake of silver nanoparticles with different surface modifications. Nanotoxicology 2020;14:111-26. [PMID: 31648587 DOI: 10.1080/17435390.2019.1675794] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
14 Li Q, Li T, Liu C, Deloid G, Pyrgiotakis G, Demokritou P, Zhang R, Xiao H, Mcclements DJ. Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions. Nanotoxicology 2017;11:1087-101. [DOI: 10.1080/17435390.2017.1398356] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
15 Bolan S, Seshadri B, Keely S, Kunhikrishnan A, Bruce J, Grainge I, Talley NJ, Naidu R. Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability. Sci Rep 2021;11:14675. [PMID: 34282255 DOI: 10.1038/s41598-021-94174-9] [Reference Citation Analysis]
16 Shani-levi C, Alvito P, Andrés A, Assunção R, Barberá R, Blanquet-diot S, Bourlieu C, Brodkorb A, Cilla A, Deglaire A, Denis S, Dupont D, Heredia A, Karakaya S, Giosafatto CVL, Mariniello L, Martins C, Ménard O, El SN, Vegarud GE, Ulleberg E, Lesmes U. Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science & Technology 2017;60:52-63. [DOI: 10.1016/j.tifs.2016.10.017] [Cited by in Crossref: 84] [Cited by in F6Publishing: 49] [Article Influence: 16.8] [Reference Citation Analysis]
17 Ude VC, Brown DM, Maciaszek K, Stone V, Johnston HJ. Comparing the sensitivity of different intestinal Caco-2 in vitro monocultures and co-cultures to amorphous silicon dioxide nanomaterials and the clay montmorillonite. NanoImpact 2019;15:100165. [DOI: 10.1016/j.impact.2019.100165] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
18 Lefebvre DE, Ross N, Kocmarek AL, Cowell S, Dai S, Qiao C, Curran I, Koerner T, Bondy GS, Fine JH. In vitro immunomodulation of splenocytes from DO11.10 mice by the food colouring agent amaranth. Food and Chemical Toxicology 2017;110:395-401. [DOI: 10.1016/j.fct.2017.10.041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
19 Bouwmeester H, van der Zande M, Jepson MA. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10. [PMID: 28548289 DOI: 10.1002/wnan.1481] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 8.8] [Reference Citation Analysis]
20 Saez-Tenorio M, Domenech J, García-Rodríguez A, Velázquez A, Hernández A, Marcos R, Cortés C. Assessing the relevance of exposure time in differentiated Caco-2/HT29 cocultures. Effects of silver nanoparticles. Food Chem Toxicol 2019;123:258-67. [PMID: 30403969 DOI: 10.1016/j.fct.2018.11.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
21 Lucas-González R, Viuda-Martos M, Pérez-Alvarez JA, Fernández-López J. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Res Int 2018;107:423-36. [PMID: 29580504 DOI: 10.1016/j.foodres.2018.02.055] [Cited by in Crossref: 58] [Cited by in F6Publishing: 38] [Article Influence: 14.5] [Reference Citation Analysis]
22 Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021;175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Reference Citation Analysis]
23 Guggenheim EJ, Milani S, Röttgermann PJ, Dusinska M, Saout C, Salvati A, Rädler JO, Lynch I. Refining in vitro models for nanomaterial exposure to cells and tissues. NanoImpact 2018;10:121-42. [DOI: 10.1016/j.impact.2018.02.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
24 Kämpfer AAM, Urbán P, La Spina R, Jiménez IO, Kanase N, Stone V, Kinsner-Ovaskainen A. Ongoing inflammation enhances the toxicity of engineered nanomaterials: Application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol In Vitro 2020;63:104738. [PMID: 31760064 DOI: 10.1016/j.tiv.2019.104738] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
25 Bouwmeester H, Brandhoff P, Marvin HJ, Weigel S, Peters RJ. State of the safety assessment and current use of nanomaterials in food and food production. Trends in Food Science & Technology 2014;40:200-10. [DOI: 10.1016/j.tifs.2014.08.009] [Cited by in Crossref: 71] [Cited by in F6Publishing: 33] [Article Influence: 8.9] [Reference Citation Analysis]
26 Shin SW, Song IH, Um SH. Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials (Basel) 2015;5:1351-65. [PMID: 28347068 DOI: 10.3390/nano5031351] [Cited by in Crossref: 138] [Cited by in F6Publishing: 103] [Article Influence: 19.7] [Reference Citation Analysis]
27 Hannon JC, Kerry J, Cruz-romero M, Morris M, Cummins E. Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends in Food Science & Technology 2015;43:43-62. [DOI: 10.1016/j.tifs.2015.01.008] [Cited by in Crossref: 88] [Cited by in F6Publishing: 61] [Article Influence: 12.6] [Reference Citation Analysis]
28 Zakhem E, Raghavan S, Suhar RA, Bitar KN. Bioengineering and regeneration of gastrointestinal tissue: where are we now and what comes next? Expert Opin Biol Ther 2019;19:527-37. [PMID: 30880502 DOI: 10.1080/14712598.2019.1595579] [Reference Citation Analysis]
29 Limage R, Tako E, Kolba N, Guo Z, García-Rodríguez A, Marques CNH, Mahler GJ. TiO2 Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness and Composition in a Gastrointestinal Tract Model. Small 2020;16:e2000601. [PMID: 32338455 DOI: 10.1002/smll.202000601] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
30 Bellmann S, Carlander D, Fasano A, Momcilovic D, Scimeca JA, Waldman WJ, Gombau L, Tsytsikova L, Canady R, Pereira DI, Lefebvre DE. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:609-622. [PMID: 25641962 DOI: 10.1002/wnan.1333] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 8.4] [Reference Citation Analysis]
31 Li Y, Zhang C, Liu L, Gong Y, Xie Y, Cao Y. The effects of baicalein or baicalin on the colloidal stability of ZnO nanoparticles (NPs) and toxicity of NPs to Caco-2 cells. Toxicol Mech Methods 2018;28:167-76. [PMID: 28868948 DOI: 10.1080/15376516.2017.1376023] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
32 Carlander U, Midander K, Hedberg YS, Johanson G, Bottai M, Karlsson HL. Macrophage-Assisted Dissolution of Gold Nanoparticles. ACS Appl Bio Mater 2019;2:1006-16. [DOI: 10.1021/acsabm.8b00537] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
33 Beloqui A, des Rieux A, Préat V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Advanced Drug Delivery Reviews 2016;106:242-55. [DOI: 10.1016/j.addr.2016.04.014] [Cited by in Crossref: 71] [Cited by in F6Publishing: 63] [Article Influence: 11.8] [Reference Citation Analysis]
34 Sharma D, Sharma N, Pathak M, Agrawala PK, Basu M, Ojha H. Nanotechnology-based drug delivery systems. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. Elsevier; 2018. pp. 39-79. [DOI: 10.1016/b978-0-12-813689-8.00002-1] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
35 Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y. Safety Assessment of Nanomaterials to Eyes: An Important but Neglected Issue. Adv Sci (Weinh) 2019;6:1802289. [PMID: 31453052 DOI: 10.1002/advs.201802289] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
36 Dang F, Jiang Y, Li M, Zhong H, Peijnenburg W, Shi W, Zhou D. Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. Environmental Pollution 2018;243:364-73. [DOI: 10.1016/j.envpol.2018.08.092] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
37 Ponce de León-rodríguez MDC, Guyot J, Laurent-babot C. Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation. Critical Reviews in Food Science and Nutrition 2019;59:3648-66. [DOI: 10.1080/10408398.2018.1506734] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
38 Cueva C, Gil-Sánchez I, Tamargo A, Miralles B, Crespo J, Bartolomé B, Moreno-Arribas MV. Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi®). Impact on human gut microbiota. Food Chem Toxicol 2019;132:110657. [PMID: 31276746 DOI: 10.1016/j.fct.2019.110657] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
39 Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MV, Bellmann S, van der Zande M, Le Gac S, Krystek P, Peters RJ, Rietjens IM, Bouwmeester H. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol 2015;89:1469-95. [PMID: 25975987 DOI: 10.1007/s00204-015-1518-5] [Cited by in Crossref: 82] [Cited by in F6Publishing: 65] [Article Influence: 11.7] [Reference Citation Analysis]
40 Wang MM, Wang J, Cao R, Wang SY, Du H. Natural Transformation of Zinc Oxide Nanoparticles and Their Cytotoxicity and Mutagenicity. Journal of Nanomaterials 2017;2017:1-12. [DOI: 10.1155/2017/8457960] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
41 Greco G, Agostini M, Tonazzini I, Sallemi D, Barone S, Cecchini M. Surface-Acoustic-Wave (SAW)-Driven Device for Dynamic Cell Cultures. Anal Chem 2018;90:7450-7. [PMID: 29791795 DOI: 10.1021/acs.analchem.8b00972] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
42 Senchukova M. A Brief Review about the Role of Nanomaterials, Mineral-Organic Nanoparticles, and Extra-Bone Calcification in Promoting Carcinogenesis and Tumor Progression. Biomedicines 2019;7:E65. [PMID: 31466331 DOI: 10.3390/biomedicines7030065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
43 Martins JT, Bourbon AI, Pinheiro AC, Fasolin LH, Vicente AA. Protein-Based Structures for Food Applications: From Macro to Nanoscale. Front Sustain Food Syst 2018;2:77. [DOI: 10.3389/fsufs.2018.00077] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
44 Ude VC, Brown DM, Stone V, Johnston HJ. Time dependent impact of copper oxide nanomaterials on the expression of genes associated with oxidative stress, metal binding, inflammation and mucus secretion in single and co-culture intestinal in vitro models. Toxicol In Vitro 2021;74:105161. [PMID: 33839236 DOI: 10.1016/j.tiv.2021.105161] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Sah BNP, Lueangsakulthai J, Kim BJ, Hauser BR, Woo Y, Olyaei A, Aloia M, O'Connor A, Scottoline B, Pastey MK, Dallas DC. Partial Degradation of Recombinant Antibody Functional Activity During Infant Gastrointestinal Digestion: Implications for Oral Antibody Supplementation. Front Nutr 2020;7:130. [PMID: 32923453 DOI: 10.3389/fnut.2020.00130] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
46 Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016;240:504-26. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Cited by in Crossref: 184] [Cited by in F6Publishing: 154] [Article Influence: 30.7] [Reference Citation Analysis]
47 van der Zande M, Jemec Kokalj A, Spurgeon DJ, Loureiro S, Silva PV, Khodaparast Z, Drobne D, Clark NJ, van den Brink NW, Baccaro M, van Gestel CAM, Bouwmeester H, Handy RD. The gut barrier and the fate of engineered nanomaterials: a view from comparative physiology. Environ Sci : Nano 2020;7:1874-98. [DOI: 10.1039/d0en00174k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
48 Trukhachev VI, Chmykhalo VK, Belanova AA, Beseda DK, Chikindas ML, Bren AB, Ermakov AM, Donnik IM, Belousova MM, Zolotukhin PV. Probiotic biomarkers and models upside down: From humans to animals. Vet Microbiol 2021;261:109156. [PMID: 34388682 DOI: 10.1016/j.vetmic.2021.109156] [Reference Citation Analysis]
49 Handral HK, Tong HJ, Islam I, Sriram G, Rosa V, Cao T. Pluripotent stem cells: An in vitro model for nanotoxicity assessments. J Appl Toxicol 2016;36:1250-8. [PMID: 27241574 DOI: 10.1002/jat.3347] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
50 Babadi D, Dadashzadeh S, Osouli M, Daryabari MS, Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. J Control Release 2020;321:669-709. [PMID: 32112856 DOI: 10.1016/j.jconrel.2020.02.041] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
51 Henson TE, Navratilova J, Tennant AH, Bradham KD, Rogers KR, Hughes MF. In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology 2019;13:795-811. [PMID: 30938207 DOI: 10.1080/17435390.2019.1578428] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 8.7] [Reference Citation Analysis]
52 Gong Y, Liu L, Li J, Cao Y. The presence of palmitate affected the colloidal stability of ZnO NPs but not the toxicity to Caco-2 cells. J Nanopart Res 2017;19. [DOI: 10.1007/s11051-017-4038-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
53 Susewind J, de Souza Carvalho-Wodarz C, Repnik U, Collnot EM, Schneider-Daum N, Griffiths GW, Lehr CM. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology 2016;10:53-62. [PMID: 25738417 DOI: 10.3109/17435390.2015.1008065] [Cited by in Crossref: 21] [Cited by in F6Publishing: 34] [Article Influence: 3.0] [Reference Citation Analysis]
54 Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y. The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells. Chem Biol Interact 2017;278:40-7. [PMID: 28987328 DOI: 10.1016/j.cbi.2017.10.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 6.2] [Reference Citation Analysis]
55 Yu X, Wen T, Cao P, Shan L, Li L. Alginate-chitosan coated layered double hydroxide nanocomposites for enhanced oral vaccine delivery. Journal of Colloid and Interface Science 2019;556:258-65. [DOI: 10.1016/j.jcis.2019.08.027] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 8.3] [Reference Citation Analysis]
56 Sohal IS, O'Fallon KS, Gaines P, Demokritou P, Bello D. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Part Fibre Toxicol 2018;15:29. [PMID: 29970114 DOI: 10.1186/s12989-018-0265-1] [Cited by in Crossref: 86] [Cited by in F6Publishing: 75] [Article Influence: 21.5] [Reference Citation Analysis]
57 Wu P, Chen XD. On designing biomimic in vitro human and animal digestion track models: ideas, current and future devices. Current Opinion in Food Science 2020;35:10-9. [DOI: 10.1016/j.cofs.2019.12.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
58 More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández-Jerez A, Hougaard Bennekou S, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano Deceased V, Turck D, Younes M, Castenmiller J, Chaudhry Q, Cubadda F, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, Weigel S, Barthelemy E, Rincon A, Tarazona J, Schoonjans R; EFSA Scientific Committee. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J 2021;19:e06768. [PMID: 34377190 DOI: 10.2903/j.efsa.2021.6768] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 van der Zande M, Undas AK, Kramer E, Monopoli MP, Peters RJ, Garry D, Antunes Fernandes EC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H. Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology 2016;10:1431-41. [PMID: 27597447 DOI: 10.1080/17435390.2016.1225132] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 6.3] [Reference Citation Analysis]
60 Jiang Q, Li X, Cheng S, Gu Y, Chen G, Shen Y, Xie Y, Cao Y. Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages. Environmental Toxicology and Pharmacology 2016;48:103-9. [DOI: 10.1016/j.etap.2016.10.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
61 Kaphle A, Pn N, Umapathi A, Chopra M, Daima HK. Nanomaterial Impact, Toxicity and Regulation in Agriculture, Food and Environment. In: Ranjan S, Dasgupta N, Lichtfouse E, editors. Nanoscience in Food and Agriculture 5. Cham: Springer International Publishing; 2017. pp. 205-42. [DOI: 10.1007/978-3-319-58496-6_8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]