BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 2013;33:172-215. [PMID: 22765907 DOI: 10.3109/07388551.2012.681625] [Cited by in Crossref: 178] [Cited by in F6Publishing: 129] [Article Influence: 17.8] [Reference Citation Analysis]
Number Citing Articles
1 John EM, Sureshkumar S, Sankar TV, Divya KR. Phycoremediation in aquaculture; a win-win paradigm. Environmental Technology Reviews 2020;9:67-84. [DOI: 10.1080/21622515.2020.1830185] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Moudříková Š, Nedbal L, Solovchenko A, Mojzeš P. Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. Algal Research 2017;23:216-22. [DOI: 10.1016/j.algal.2017.02.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
3 Baulina O, Gorelova O, Solovchenko A, Chivkunova O, Semenova L, Selyakh I, Scherbakov P, Burakova O, Lobakova E, Wagner D. Diversity of the nitrogen starvation responses in subarctic Desmodesmus sp. (Chlorophyceae) strains isolated from symbioses with invertebrates. FEMS Microbiology Ecology 2016;92:fiw031. [DOI: 10.1093/femsec/fiw031] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
4 Lomartire S, Marques JC, Gonçalves AMM. An Overview to the Health Benefits of Seaweeds Consumption. Mar Drugs 2021;19:341. [PMID: 34203804 DOI: 10.3390/md19060341] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 La Barre S, Roullier C, Boustie J. Mycosporine-Like Amino Acids (MAAs) in Biological Photosystems. In: La Barre S, Kornprobst J, editors. Outstanding Marine Molecules. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. pp. 333-60. [DOI: 10.1002/9783527681501.ch15] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
6 Schierenbeck L, Ries D, Rogge K, Grewe S, Weisshaar B, Kruse O. Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics 2015;16:57. [PMID: 25730202 DOI: 10.1186/s12864-015-1232-y] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 5.1] [Reference Citation Analysis]
7 Matsui H, Anraku K, Kotani T. Spectrophotometry can monitor changes in algal metabolism triggered by nutrient deficiency in Nannochloropsis oculata cultured under various light-emitting diode light regimes. Fish Sci 2019;85:167-76. [DOI: 10.1007/s12562-018-1261-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Afzal I, Shahid A, Ibrahim M, Liu T, Nawaz M, Mehmood MA. Microalgae. Algae Based Polymers, Blends, and Composites. Elsevier; 2017. pp. 55-75. [DOI: 10.1016/b978-0-12-812360-7.00003-3] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
9 Reza AHMM, Zhu X, Qin J, Tang Y. Microalgae-Derived Health Supplements to Therapeutic Shifts: Redox-Based Study Opportunities with AIE-Based Technologies. Adv Healthc Mater 2021;:e2101223. [PMID: 34468087 DOI: 10.1002/adhm.202101223] [Reference Citation Analysis]
10 Trovão M, Pereira H, Silva J, Páramo J, Quelhas P, Santos T, Silva JT, Machado A, Gouveia L, Barreira L, Varela J. Growth performance, biochemical composition and sedimentation velocity of Tetraselmis sp. CTP4 under different salinities using low-cost lab- and pilot-scale systems. Heliyon 2019;5:e01553. [PMID: 31193744 DOI: 10.1016/j.heliyon.2019.e01553] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Hassan S, Meenatchi R, Pachillu K, Bansal S, Brindangnanam P, Arockiaraj J, Kiran GS, Selvin J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol 2022. [PMID: 35014044 DOI: 10.1002/jobm.202100477] [Reference Citation Analysis]
12 Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. Bioresour Technol 2021;337:125398. [PMID: 34139560 DOI: 10.1016/j.biortech.2021.125398] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. Biotechnol Biofuels 2019;12:292. [PMID: 31890020 DOI: 10.1186/s13068-019-1635-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
14 Damodaran SP, Eberhard S, Boitard L, Rodriguez JG, Wang Y, Bremond N, Baudry J, Bibette J, Wollman FA. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii. PLoS One 2015;10:e0118987. [PMID: 25760649 DOI: 10.1371/journal.pone.0118987] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
15 Mussgnug JH. Genetic tools and techniques for Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 2015;99:5407-18. [PMID: 26025017 DOI: 10.1007/s00253-015-6698-7] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 6.4] [Reference Citation Analysis]
16 Manoyan J, Gabrielyan L, Kalantaryan V, Trchounian A. Growth properties and hydrogen yield in green microalga Parachlorella kessleri: Effects of low-intensity electromagnetic irradiation at the frequencies of 51.8 GHz and 53.0 GHz. J Photochem Photobiol B 2020;211:112016. [PMID: 32920483 DOI: 10.1016/j.jphotobiol.2020.112016] [Reference Citation Analysis]
17 Lee J, Cho YU, Kim KH, Lee DY. Distinctive metabolomic responses of Chlamydomonas reinhardtii to the chemical elicitation by methyl jasmonate and salicylic acid. Process Biochemistry 2016;51:1147-54. [DOI: 10.1016/j.procbio.2016.05.029] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
18 Desmet J, Meunier C, Danloy E, Duprez M, Lox F, Thomas D, Hantson A, Crine M, Toye D, Rooke J, Su B. Highly efficient, long life, reusable and robust photosynthetic hybrid core–shell beads for the sustainable production of high value compounds. Journal of Colloid and Interface Science 2015;448:79-87. [DOI: 10.1016/j.jcis.2015.01.091] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
19 Aléman-nava GS, Muylaert K, Cuellar Bermudez SP, Depraetere O, Rittmann B, Parra-saldívar R, Vandamme D. Two-stage cultivation of Nannochloropsis oculata for lipid production using reversible alkaline flocculation. Bioresource Technology 2017;226:18-23. [DOI: 10.1016/j.biortech.2016.11.121] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
20 Ercolano G, De Cicco P, Ianaro A. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds. Mar Drugs 2019;17:E31. [PMID: 30621025 DOI: 10.3390/md17010031] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
21 Vuppaladadiyam AK, Prinsen P, Raheem A, Luque R, Zhao M. Sustainability Analysis of Microalgae Production Systems: A Review on Resource with Unexploited High-Value Reserves. Environ Sci Technol 2018;52:14031-49. [DOI: 10.1021/acs.est.8b02876] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
22 Grama SB, Liu Z, Li J. Emerging Trends in Genetic Engineering of Microalgae for Commercial Applications. Marine Drugs 2022;20:285. [DOI: 10.3390/md20050285] [Reference Citation Analysis]
23 Bhalamurugan GL, Valerie O, Mark L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research 2018;23:229-41. [DOI: 10.4491/eer.2017.220] [Cited by in Crossref: 68] [Cited by in F6Publishing: 26] [Article Influence: 17.0] [Reference Citation Analysis]
24 Apostolopoulou NG, Smeti E, Lamorgese M, Varkitzi I, Whitfield P, Regnault C, Spatharis S. Microalgae show a range of responses to exometabolites of foreign species. Algal Research 2022;62:102627. [DOI: 10.1016/j.algal.2021.102627] [Reference Citation Analysis]
25 Kirby J, Nishimoto M, Chow RW, Baidoo EE, Wang G, Martin J, Schackwitz W, Chan R, Fortman JL, Keasling JD. Enhancing Terpene yield from sugars via novel routes to 1-deoxy-d-xylulose 5-phosphate. Appl Environ Microbiol 2015;81:130-8. [PMID: 25326299 DOI: 10.1128/AEM.02920-14] [Cited by in Crossref: 38] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
26 Ali HEA, El-fayoumy EA, Rasmy WE, Soliman RM, Abdullah MA. Two-stage cultivation of Chlorella vulgaris using light and salt stress conditions for simultaneous production of lipid, carotenoids, and antioxidants. J Appl Phycol 2021;33:227-39. [DOI: 10.1007/s10811-020-02308-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 van den Berg MF, Botha A, Bierman A, Oberholster PJ. Harvesting Microalgal Biomass from a Cultured Algae-Based Wastewater Pond System. J Environ Eng 2020;146:04020133. [DOI: 10.1061/(asce)ee.1943-7870.0001810] [Reference Citation Analysis]
28 Zhang X, Betterle N, Hidalgo Martinez D, Melis A. Recombinant Protein Stability in Cyanobacteria. ACS Synth Biol 2021;10:810-25. [PMID: 33684287 DOI: 10.1021/acssynbio.0c00610] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Choi Y, Jang HM, Kan E. Microalgal Biomass and Lipid Production on Dairy Effluent Using a Novel Microalga, Chlorella sp. Isolated from Dairy Wastewater. Biotechnol Bioproc E 2018;23:333-40. [DOI: 10.1007/s12257-018-0094-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.8] [Reference Citation Analysis]
30 Tibbetts SM, Milley JE, Lall SP. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 2015;27:1109-19. [DOI: 10.1007/s10811-014-0428-x] [Cited by in Crossref: 114] [Cited by in F6Publishing: 62] [Article Influence: 14.3] [Reference Citation Analysis]
31 Yang B, Liu J, Ma X, Guo B, Liu B, Wu T, Jiang Y, Chen F. Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae. Biotechnol Biofuels 2017;10:229. [PMID: 29034004 DOI: 10.1186/s13068-017-0916-8] [Cited by in Crossref: 58] [Cited by in F6Publishing: 33] [Article Influence: 11.6] [Reference Citation Analysis]
32 Rastogi RP, Madamwar D, Nakamoto H, Incharoensakdi A. Resilience and self-regulation processes of microalgae under UV radiation stress. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2020;43:100322. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
33 Su Y, Song K, Zhang P, Su Y, Cheng J, Chen X. Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews 2017;74:402-11. [DOI: 10.1016/j.rser.2016.12.078] [Cited by in Crossref: 105] [Cited by in F6Publishing: 54] [Article Influence: 21.0] [Reference Citation Analysis]
34 Zoccali M, Giuffrida D, Salafia F, Socaciu C, Skjånes K, Dugo P, Mondello L. First Apocarotenoids Profiling of Four Microalgae Strains. Antioxidants (Basel) 2019;8:E209. [PMID: 31284598 DOI: 10.3390/antiox8070209] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
35 Taghavijeloudar M, Park J, Hashemi S, Han M. The effects of surfactants (sodium dodecyl sulfate, triton X-100 and cetyl trimethyl ammonium bromide) on the dewaterability of microalgae biomass using pressure filtration. Bioresource Technology 2019;273:565-72. [DOI: 10.1016/j.biortech.2018.11.062] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
36 Kini S, Divyashree M, Mani MK, Mamatha BS. Algae and cyanobacteria as a source of novel bioactive compounds for biomedical applications. Advances in Cyanobacterial Biology. Elsevier; 2020. pp. 173-94. [DOI: 10.1016/b978-0-12-819311-2.00012-7] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
37 Hernandez-Patlan D, Solis-Cruz B, Pontin KP, Latorre JD, Baxter MFA, Hernandez-Velasco X, Merino-Guzman R, Méndez-Albores A, Hargis BM, Lopez-Arellano R, Tellez G. Evaluation of a Solid Dispersion of Curcumin With Polyvinylpyrrolidone and Boric Acid Against Salmonella Enteritidis Infection and Intestinal Permeability in Broiler Chickens: A Pilot Study. Front Microbiol 2018;9:1289. [PMID: 29973919 DOI: 10.3389/fmicb.2018.01289] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
38 Ma R, Wang B, Chua ET, Zhao X, Lu K, Ho SH, Shi X, Liu L, Xie Y, Lu Y, Chen J. Comprehensive Utilization of Marine Microalgae for Enhanced Co-Production of Multiple Compounds. Mar Drugs 2020;18:E467. [PMID: 32948074 DOI: 10.3390/md18090467] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
39 Yu X, Chen L, Zhang W. Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front Microbiol 2015;6:56. [PMID: 25741321 DOI: 10.3389/fmicb.2015.00056] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 9.9] [Reference Citation Analysis]
40 Tan X, Zhu J, Wakisaka M. Enhancement of Lipid Production by <i>Euglena gracilis</i> Using Vanillin as a Growth Stimulant. J Jpn Inst Energy 2021;100:127-34. [DOI: 10.3775/jie.100.127] [Reference Citation Analysis]
41 Japar AS, Takriff MS, Mohd Yasin NH. Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. Algal Research 2021;53:102163. [DOI: 10.1016/j.algal.2020.102163] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
42 Limongi AR, Viviano E, De Luca M, Radice RP, Bianco G, Martelli G. Biohydrogen from Microalgae: Production and Applications. Applied Sciences 2021;11:1616. [DOI: 10.3390/app11041616] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
43 Panahi Y, Yari Khosroushahi A, Sahebkar A, Heidari HR. Impact of Cultivation Condition and Media Content onChlorella vulgaris Composition. Adv Pharm Bull 2019;9:182-94. [PMID: 31380244 DOI: 10.15171/apb.2019.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
44 Bottone C, Camerlingo R, Miceli R, Salbitani G, Sessa G, Pirozzi G, Carfagna S. Antioxidant and anti-proliferative properties of extracts from heterotrophic cultures of Galdieria sulphuraria. Nat Prod Res 2019;33:1659-63. [PMID: 29334254 DOI: 10.1080/14786419.2018.1425853] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
45 Liu Z, Li H, Wei Y, Chu W, Chong Y, Long X, Liu Z, Qin S, Shao H. Signal transduction pathways in Synechocystis sp. PCC 6803 and biotechnological implications under abiotic stress. Critical Reviews in Biotechnology 2013;35:269-80. [DOI: 10.3109/07388551.2013.838662] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
46 García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 2016;34:859-73. [PMID: 27184302 DOI: 10.1016/j.biotechadv.2016.05.003] [Cited by in Crossref: 52] [Cited by in F6Publishing: 33] [Article Influence: 8.7] [Reference Citation Analysis]
47 Dragišić Maksimović JJ, Poledica MM, Radivojević DD, Milivojević JM. Enzymatic Profile of 'Willamette' Raspberry Leaf and Fruit Affected by Prohexadione-Ca and Young Canes Removal Treatments. J Agric Food Chem 2017;65:5034-40. [PMID: 28581737 DOI: 10.1021/acs.jafc.7b00638] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
48 Morales-sánchez D, Martinez-rodriguez OA, Martinez A. Heterotrophic cultivation of microalgae: production of metabolites of commercial interest: Heterotrophic cultivation of microalgae: products. J Chem Technol Biotechnol 2017;92:925-36. [DOI: 10.1002/jctb.5115] [Cited by in Crossref: 54] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
49 Paul S, Bravo Vázquez LA, Márquez Nafarrate M, Gutiérrez Reséndiz AI, Srivastava A, Sharma A. The regulatory activities of microRNAs in non-vascular plants: a mini review. Planta 2021;254:57. [PMID: 34424349 DOI: 10.1007/s00425-021-03707-z] [Reference Citation Analysis]
50 De-luca R, Bezzo F, Béchet Q, Bernard O. Exploiting meteorological forecasts for the optimal operation of algal ponds. Journal of Process Control 2017;55:55-65. [DOI: 10.1016/j.jprocont.2017.03.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
51 Antal T, Konyukhov I, Volgusheva A, Plyusnina T, Khruschev S, Kukarskikh G, Goryachev S, Rubin A. Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiol Plantarum 2019;165:476-86. [DOI: 10.1111/ppl.12693] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
52 Zhang BB, Wang L, Charles V, Rooke JC, Su BL. Robust and Biocompatible Hybrid Matrix with Controllable Permeability for Microalgae Encapsulation. ACS Appl Mater Interfaces 2016;8:8939-46. [PMID: 27027232 DOI: 10.1021/acsami.6b00191] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
53 Di Lena G, Casini I, Lucarini M, Lombardi-Boccia G. Carotenoid profiling of five microalgae species from large-scale production. Food Res Int 2019;120:810-8. [PMID: 31000301 DOI: 10.1016/j.foodres.2018.11.043] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 9.5] [Reference Citation Analysis]
54 Azaman SNA, Nagao N, Yusoff FM, Tan SW, Yeap SK. A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. PeerJ 2017;5:e3473. [PMID: 28929006 DOI: 10.7717/peerj.3473] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 5.4] [Reference Citation Analysis]
55 Ribeiro RLL, Vargas JVC, Mariano AB, Ordonez JC. The experimental validation of a large-scale compact tubular microalgae photobioreactor model. Int J Energy Res 2017;41:2221-35. [DOI: 10.1002/er.3784] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
56 Poudyal R, Tiwari I, Koirala A, Masukawa H, Inoue K, Tomo T, Najafpour M, Allakhverdiev S, Veziroğlu T. Hydrogen production using photobiological methods. Compendium of Hydrogen Energy. Elsevier; 2015. pp. 289-317. [DOI: 10.1016/b978-1-78242-361-4.00010-8] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
57 Gorelova O, Baulina O, Solovchenko A, Selyakh I, Chivkunova O, Semenova L, Scherbakov P, Burakova O, Lobakova E. Coordinated rearrangements of assimilatory and storage cell compartments in a nitrogen-starving symbiotic chlorophyte cultivated under high light. Arch Microbiol 2015;197:181-95. [PMID: 25239707 DOI: 10.1007/s00203-014-1036-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
58 Aslam A, Bahadar A, Liaquat R, Saleem M, Waqas A, Zwawi M. Algae as an attractive source for cosmetics to counter environmental stress. Sci Total Environ 2021;772:144905. [PMID: 33770892 DOI: 10.1016/j.scitotenv.2020.144905] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
59 Hariskos I, Posten C. Biorefinery of microalgae - opportunities and constraints for different production scenarios. Biotechnol J 2014;9:739-52. [PMID: 24838815 DOI: 10.1002/biot.201300142] [Cited by in Crossref: 71] [Cited by in F6Publishing: 50] [Article Influence: 8.9] [Reference Citation Analysis]
60 Vuppaladadiyam AK, Prinsen P, Raheem A, Luque R, Zhao M. Microalgae cultivation and metabolites production: a comprehensive review. Biofuels, Bioprod Bioref 2018;12:304-24. [DOI: 10.1002/bbb.1864] [Cited by in Crossref: 32] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
61 Lin HD, Liu BH, Kuo TT, Tsai HC, Feng TY, Huang CC, Chien LF. Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT. Bioresour Technol 2013;143:154-62. [PMID: 23792754 DOI: 10.1016/j.biortech.2013.05.101] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
62 Ji C, Cao X, Liu H, Qu J, Yao C, Zou H, Xue S. Investigating Cellular Responses During Photohydrogen Production by the Marine Microalga Tetraselmis subcordiformis by Quantitative Proteome Analysis. Appl Biochem Biotechnol 2015;177:649-61. [DOI: 10.1007/s12010-015-1769-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
63 Abu-ghosh S, Pal-nath D, Markovitch D, Solovchenko A, Didi-cohen S, Portugal I, Khozin-goldberg I, Cohen Z, Boussiba S. A novel source of dihomo-γ-linolenic acid: Possibilities and limitations of DGLA production in the high-density cultures of the Δ5 desaturase-mutant microalga Lobosphaera incisa: Optimization of DGLA production by P127 in dense culture. Eur J Lipid Sci Technol 2015;117:760-6. [DOI: 10.1002/ejlt.201400430] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
64 Winck FV, Riaño-Pachón DM, Franco TT. Editorial: Advances in Microalgae Biology and Sustainable Applications. Front Plant Sci 2016;7:1385. [PMID: 27708651 DOI: 10.3389/fpls.2016.01385] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
65 Uggetti E, Sialve B, Trably E, Steyer J. Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels, Bioprod Bioref 2014;8:516-29. [DOI: 10.1002/bbb.1469] [Cited by in Crossref: 97] [Cited by in F6Publishing: 71] [Article Influence: 12.1] [Reference Citation Analysis]
66 Li Y, Qiu F, Yan H, Wan X, Wang M, Ren K, Xu Q, Lv L, Yin C, Liu X, Zhang H, Mahmoud K. Increasing the autotrophic growth of ChlorellaUSTB ‐01 via the control of bacterial contamination by BdellovibrioUSTB ‐06. J Appl Microbiol 2018;124:1131-8. [DOI: 10.1111/jam.13682] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
67 Rodionova M, Poudyal R, Tiwari I, Voloshin R, Zharmukhamedov S, Nam H, Zayadan B, Bruce B, Hou H, Allakhverdiev S. Biofuel production: Challenges and opportunities. International Journal of Hydrogen Energy 2017;42:8450-61. [DOI: 10.1016/j.ijhydene.2016.11.125] [Cited by in Crossref: 216] [Cited by in F6Publishing: 85] [Article Influence: 43.2] [Reference Citation Analysis]
68 Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci 2019;26:709-22. [PMID: 31048995 DOI: 10.1016/j.sjbs.2017.11.003] [Cited by in Crossref: 193] [Cited by in F6Publishing: 98] [Article Influence: 38.6] [Reference Citation Analysis]
69 Martínez-francés E, Escudero-oñate C. Cyanobacteria and Microalgae in the Production of Valuable Bioactive Compounds. In: Jacob-lopes E, Zepka LQ, Queiroz MI, editors. Microalgal Biotechnology. InTech; 2018. [DOI: 10.5772/intechopen.74043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
70 Alyabev AJ, Andreyeva IN, Ponomareva AA, Salnikov VV, Suslov MA. Influence of Moderate Hyperosmotic Stress on Ultrastructure and Indicators of Energy Metabolism of Chlorella vulgaris (Chlorophyta). Inland Water Biol 2020;13:425-33. [DOI: 10.1134/s1995082920030025] [Reference Citation Analysis]
71 Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart H, Gsell AS, Ibelings BW, Kagami M, Küpper FC, Letcher PM, Loyau A, Miki T, Nejstgaard JC, Rasconi S, Reñé A, Rohrlack T, Rojas-jimenez K, Schmeller DS, Scholz B, Seto K, Sime-ngando T, Sukenik A, Van de Waal DB, Van den Wyngaert S, Van Donk E, Wolinska J, Wurzbacher C, Agha R. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs: Research needs in plankton chytridiomycosis. Environmental Microbiology 2017;19:3802-22. [DOI: 10.1111/1462-2920.13827] [Cited by in Crossref: 89] [Cited by in F6Publishing: 58] [Article Influence: 17.8] [Reference Citation Analysis]
72 Fica ZT, Sims RC. Algae-based biofilm productivity utilizing dairy wastewater: effects of temperature and organic carbon concentration. J Biol Eng 2016;10:18. [PMID: 28018482 DOI: 10.1186/s13036-016-0039-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
73 Manjrekar ON, Sun Y, He L, Tang YJ, Dudukovic MP. Hydrodynamics and mass transfer coefficients in a bubble column photo-bioreactor. Chemical Engineering Science 2017;168:55-66. [DOI: 10.1016/j.ces.2017.04.016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 4.4] [Reference Citation Analysis]
74 Khalid AAH, Yaakob Z, Abdullah SRS, Takriff MS. Analysis of the elemental composition and uptake mechanism of Chlorella sorokiniana for nutrient removal in agricultural wastewater under optimized response surface methodology (RSM) conditions. Journal of Cleaner Production 2019;210:673-86. [DOI: 10.1016/j.jclepro.2018.11.095] [Cited by in Crossref: 25] [Cited by in F6Publishing: 10] [Article Influence: 8.3] [Reference Citation Analysis]
75 Mcdowell D, Dick JT, Eagling L, Julius M, Sheldrake GN, Theodoridou K, Walsh PJ. Recycling nutrients from anaerobic digestates for the cultivation of Phaeodactylum tricornutum: A feasibility study. Algal Research 2020;48:101893. [DOI: 10.1016/j.algal.2020.101893] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
76 Solovchenko A, Lukyanov A, Vasilieva S, Lobakova E. Chlorophyll fluorescence as a valuable multitool for microalgal biotechnology. Biophys Rev. [DOI: 10.1007/s12551-022-00951-9] [Reference Citation Analysis]
77 Gribble MO, Karimi R, Feingold BJ, Nyland JF, O'Hara TM, Gladyshev MI, Chen CY. Mercury, selenium and fish oils in marine food webs and implications for human health. J Mar Biol Assoc U K 2016;96:43-59. [PMID: 26834292 DOI: 10.1017/S0025315415001356] [Cited by in Crossref: 57] [Cited by in F6Publishing: 18] [Article Influence: 8.1] [Reference Citation Analysis]
78 Lee N, Ko SR, Ahn CY, Oh HM. Optimized co-production of lipids and carotenoids from Ettlia sp. by regulating stress conditions. Bioresour Technol 2018;258:234-9. [PMID: 29525599 DOI: 10.1016/j.biortech.2018.03.006] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
79 Hallenbeck PC, Grogger M, Mraz M, Veverka D. Building a better mousetrap II: using Design of Experiments with unconfounded ions to compare the growth of different microalgae. Bioresour Technol 2015;184:90-9. [PMID: 25465789 DOI: 10.1016/j.biortech.2014.11.006] [Reference Citation Analysis]
80 Chaturvedi V, Goswami RK, Verma P. Genetic Engineering for Enhancement of Biofuel Production in Microalgae. In: Verma P, editor. Biorefineries: A Step Towards Renewable and Clean Energy. Singapore: Springer; 2020. pp. 539-59. [DOI: 10.1007/978-981-15-9593-6_21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
81 Bai F, Gusbeth C, Frey W, Nick P. Nanosecond pulsed electric fields trigger cell differentiation in Chlamydomonas reinhardtii. Biochimica et Biophysica Acta (BBA) - Biomembranes 2017;1859:651-61. [DOI: 10.1016/j.bbamem.2017.01.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
82 Solovchenko A, Lukyanov A, Gokare Aswathanarayana R, Pleissner D, Ambati RR. Recent developments in microalgal conversion of organic-enriched waste streams. Current Opinion in Green and Sustainable Chemistry 2020;24:61-6. [DOI: 10.1016/j.cogsc.2020.03.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
83 Aburai N, Sumida D, Abe K. Effect of light level and salinity on the composition and accumulation of free and ester-type carotenoids in the aerial microalga Scenedesmus sp. (Chlorophyceae). Algal Research 2015;8:30-6. [DOI: 10.1016/j.algal.2015.01.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
84 Vendruscolo RG, Fagundes MB, Maroneze MM, do Nascimento TC, de Menezes CR, Barin JS, Zepka LQ, Jacob-lopes E, Wagner R. Scenedesmus obliquus metabolomics: effect of photoperiods and cell growth phases. Bioprocess Biosyst Eng 2019;42:727-39. [DOI: 10.1007/s00449-019-02076-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
85 Geng Y, Cui D, Yang L, Xiong Z, Pavlostathis SG, Shao P, Zhang Y, Luo X, Luo S. Resourceful treatment of harsh high-nitrogen rare earth element tailings (REEs) wastewater by carbonate activated Chlorococcum sp. microalgae. J Hazard Mater 2021;423:127000. [PMID: 34461547 DOI: 10.1016/j.jhazmat.2021.127000] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Abedi S, Astaraei FR, Ghobadian B, Tavakoli O, Jalili H, Chivasa S, Greenwell HC. Bioenergy production using Trichormus variabilis – a review. Biofuels, Bioprod Bioref 2019;13:1365-82. [DOI: 10.1002/bbb.2023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
87 Manoyan J, Samovich T, Kozel N, Demidchik V, Gabrielyan L. Growth characteristics, biohydrogen production and photochemical activity of photosystems in green microalgae Parachlorella kessleri exposed to nitrogen deprivation. International Journal of Hydrogen Energy 2022. [DOI: 10.1016/j.ijhydene.2022.03.194] [Reference Citation Analysis]
88 Elloumi W, Jebali A, Maalej A, Chamkha M, Sayadi S. Effect of Mild Salinity Stress on the Growth, Fatty Acid and Carotenoid Compositions, and Biological Activities of the Thermal Freshwater Microalgae Scenedesmus sp. Biomolecules 2020;10:E1515. [PMID: 33171918 DOI: 10.3390/biom10111515] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
89 Manirafasha E, Ndikubwimana T, Zeng X, Lu Y, Jing K. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal 2016;109:282-96. [DOI: 10.1016/j.bej.2016.01.025] [Cited by in Crossref: 130] [Cited by in F6Publishing: 63] [Article Influence: 21.7] [Reference Citation Analysis]
90 Vieira MV, Pastrana LM, Fuciños P. Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Mar Drugs 2020;18:E644. [PMID: 33333921 DOI: 10.3390/md18120644] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
91 Torzillo G, Scoma A, Faraloni C, Giannelli L. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Crit Rev Biotechnol 2015;35:485-96. [PMID: 24754449 DOI: 10.3109/07388551.2014.900734] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
92 Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C. Microalgal hydrogen production - A review. Bioresour Technol 2017;243:1194-206. [PMID: 28774676 DOI: 10.1016/j.biortech.2017.07.085] [Cited by in Crossref: 153] [Cited by in F6Publishing: 79] [Article Influence: 30.6] [Reference Citation Analysis]
93 Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere 2021;280:130553. [PMID: 33940454 DOI: 10.1016/j.chemosphere.2021.130553] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
94 Gara-ali M, Zili F, Hosni K, Ben Ouada H, Ben-mahrez K. Lipophilic extracts of the thermophilic cyanobacterium Leptolyngbya sp. and chlorophyte Graesiella sp. and their potential use as food and anticancer agents. Algal Research 2021;60:102511. [DOI: 10.1016/j.algal.2021.102511] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Hernandez-Patlan D, Solis-Cruz B, Méndez-Albores A, Latorre JD, Hernandez-Velasco X, Tellez G, López-Arellano R. Comparison of PrestoBlue® and plating method to evaluate antimicrobial activity of ascorbic acid, boric acid and curcumin in an in vitro gastrointestinal model. J Appl Microbiol 2018;124:423-30. [PMID: 29215799 DOI: 10.1111/jam.13659] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
96 Oscanoa A, Cervantes M, Flores L, Ruiz A. Protein potential of Desmodesmus asymmetricus grown in greenhouse as an alternative food source for aquaculture. World J Microbiol Biotechnol 2022;38. [DOI: 10.1007/s11274-022-03275-8] [Reference Citation Analysis]
97 Nesamma AA, Shaikh KM, Jutur PP. Genetic Engineering of Microalgae for Production of Value-added Ingredients. Handbook of Marine Microalgae. Elsevier; 2015. pp. 405-14. [DOI: 10.1016/b978-0-12-800776-1.00026-1] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
98 Mularczyk M, Michalak I, Marycz K. Astaxanthin and other Nutrients from Haematococcus pluvialis-Multifunctional Applications. Mar Drugs 2020;18:E459. [PMID: 32906619 DOI: 10.3390/md18090459] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
99 Asker D, Awad TS. Isolation and characterization of a novel lutein-producing marine microalga using high throughput screening. Food Research International 2019;116:660-7. [DOI: 10.1016/j.foodres.2018.08.093] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
100 de M Sousa L, de S Ferreira J, Cardoso VL, Batista FRX. Nutritional influences on biomass behaviour and metabolic products by Chlamydomonas reinhardtii. World J Microbiol Biotechnol 2022;38:96. [PMID: 35460020 DOI: 10.1007/s11274-022-03277-6] [Reference Citation Analysis]
101 Valluri S, Claremboux V, Kawatra S. Opportunities and challenges in CO2 utilization. J Environ Sci (China) 2022;113:322-44. [PMID: 34963541 DOI: 10.1016/j.jes.2021.05.043] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
102 Kumar K, Ghosh S, Angelidaki I, Holdt SL, Karakashev DB, Morales MA, Das D. Recent developments on biofuels production from microalgae and macroalgae. Renewable and Sustainable Energy Reviews 2016;65:235-49. [DOI: 10.1016/j.rser.2016.06.055] [Cited by in Crossref: 54] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
103 Dammak M, Ben Hlima H, Elleuch F, Pichon C, Michaud P, Fendri I, Abdelkafi S. Flow cytometry assay to evaluate lipid production by the marine microalga Tetraselmis sp. using a two stage process. Renewable Energy 2021;177:280-9. [DOI: 10.1016/j.renene.2021.05.126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
104 Park SB, Yun JH, Ryu AJ, Yun J, Kim JW, Lee S, Choi S, Cho DH, Choi DY, Lee YJ, Kim HS. Development of a novel nannochloropsis strain with enhanced violaxanthin yield for large-scale production. Microb Cell Fact 2021;20:43. [PMID: 33588824 DOI: 10.1186/s12934-021-01535-0] [Reference Citation Analysis]
105 Rawat I, Gupta SK, Shriwastav A, Singh P, Kumari S, Bux F. Microalgae Applications in Wastewater Treatment. In: Bux F, Chisti Y, editors. Algae Biotechnology. Cham: Springer International Publishing; 2016. pp. 249-68. [DOI: 10.1007/978-3-319-12334-9_13] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
106 Skjånes K, Aesoy R, Herfindal L, Skomedal H. Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity. Physiol Plant 2021. [PMID: 34085279 DOI: 10.1111/ppl.13472] [Reference Citation Analysis]
107 Jeong Y, Cho SH, Lee H, Choi HK, Kim DM, Lee CG, Cho S, Cho BK. Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria. Microorganisms 2020;8:E1849. [PMID: 33255283 DOI: 10.3390/microorganisms8121849] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
108 Noh W, Park S, Lee SJ, Ryu BG, Kim J. The potential of a natural biopolymeric flocculant, ε-poly-L-lysine, for harvesting Chlorella ellipsoidea and its sustainability perspectives for cost and toxicity. Bioprocess Biosyst Eng 2019;42:971-8. [PMID: 30830266 DOI: 10.1007/s00449-019-02098-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
109 Senhorinho GN, Ross GM, Scott JA. Cyanobacteria and eukaryotic microalgae as potential sources of antibiotics. Phycologia 2019;54:271-82. [DOI: 10.2216/14-092.1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 10.7] [Reference Citation Analysis]
110 Liu C, Hao Y, Jiang J, Liu W. Valorization of untreated rice bran towards bioflocculant using a lignocellulose-degrading strain and its use in microalgal biomass harvest. Biotechnol Biofuels 2017;10:90. [PMID: 28413445 DOI: 10.1186/s13068-017-0780-6] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 6.4] [Reference Citation Analysis]
111 Shin H, Kim K, Jung J, Bai SC, Chang YK, Han J. Harvesting of Scenedesmus obliquus cultivated in seawater using electro-flotation. Korean J Chem Eng 2017;34:62-5. [DOI: 10.1007/s11814-016-0251-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
112 Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. Journal of Cleaner Production 2018;181:42-59. [DOI: 10.1016/j.jclepro.2018.01.125] [Cited by in Crossref: 181] [Cited by in F6Publishing: 89] [Article Influence: 45.3] [Reference Citation Analysis]
113 de Morais MG, Vaz Bda S, de Morais EG, Costa JA. Biologically Active Metabolites Synthesized by Microalgae. Biomed Res Int 2015;2015:835761. [PMID: 26339647 DOI: 10.1155/2015/835761] [Cited by in Crossref: 111] [Cited by in F6Publishing: 78] [Article Influence: 15.9] [Reference Citation Analysis]
114 Praveen P, Xiao W, Lamba B, Loh K. Low-retention operation to enhance biomass productivity in an algal membrane photobioreactor. Algal Research 2019;40:101487. [DOI: 10.1016/j.algal.2019.101487] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
115 Ugya AY, Imam TS, Li A, Ma J, Hua X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chemistry and Ecology 2020;36:174-93. [DOI: 10.1080/02757540.2019.1688308] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
116 Manoyan J, Gabrielyan L, Kozel N, Trchounian A. Regulation of biohydrogen production by protonophores in novel green microalgae Parachlorella kessleri. J Photochem Photobiol B 2019;199:111597. [PMID: 31450130 DOI: 10.1016/j.jphotobiol.2019.111597] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
117 Gitau MM, Farkas A, Balla B, Ördög V, Futó Z, Maróti G. Strain-Specific Biostimulant Effects of Chlorella and Chlamydomonas Green Microalgae on Medicago truncatula. Plants (Basel) 2021;10:1060. [PMID: 34070559 DOI: 10.3390/plants10061060] [Reference Citation Analysis]
118 Voloshin RA, Rodionova MV, Zharmukhamedov SK, Nejat Veziroglu T, Allakhverdiev SI. Review: Biofuel production from plant and algal biomass. International Journal of Hydrogen Energy 2016;41:17257-73. [DOI: 10.1016/j.ijhydene.2016.07.084] [Cited by in Crossref: 174] [Cited by in F6Publishing: 74] [Article Influence: 29.0] [Reference Citation Analysis]
119 Ryu B, Himaya S, Kim S. Applications of Microalgae-Derived Active Ingredients as Cosmeceuticals. Handbook of Marine Microalgae. Elsevier; 2015. pp. 309-16. [DOI: 10.1016/b978-0-12-800776-1.00020-0] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
120 Elfar OA, Chang C, Leong HY, Peter AP, Chew KW, Show PL. Prospects of Industry 5.0 in algae: Customization of production and new advance technology for clean bioenergy generation. Energy Conversion and Management: X 2021;10:100048. [DOI: 10.1016/j.ecmx.2020.100048] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
121 Gabrielyan L, Hakobyan L, Trchounian A. Characterization of light-dependent hydrogen production by new green microalga Parachlorella kessleri in various conditions. Journal of Photochemistry and Photobiology B: Biology 2017;175:207-10. [DOI: 10.1016/j.jphotobiol.2017.09.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
122 Christaki E, Bonos E, Florou-paneri P. Innovative Microalgae Pigments as Functional Ingredients in Nutrition. Handbook of Marine Microalgae. Elsevier; 2015. pp. 233-43. [DOI: 10.1016/b978-0-12-800776-1.00014-5] [Cited by in Crossref: 14] [Article Influence: 2.0] [Reference Citation Analysis]
123 Zhang X, Wang D, Chen J, Liu Z, Wei L, Hua Q. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica. Biotechnol Lett 2020;42:945-56. [DOI: 10.1007/s10529-020-02844-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
124 Xu L, Zhou M, Ju H, Zhang Z, Zhang J, Sun C. Enterobacter aerogenes metabolites enhance Microcystis aeruginosa biomass recovery for sustainable bioflocculant and biohydrogen production. Science of The Total Environment 2018;634:488-96. [DOI: 10.1016/j.scitotenv.2018.03.327] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
125 Martín del Campo JS, Escalante R, Robledo D, Patiño R. Hydrogen production by Chlamydomonas reinhardtii under light-driven and sulfur-deprived conditions: Using biomass grown in outdoor photobioreactors at the Yucatan Peninsula. International Journal of Hydrogen Energy 2014;39:20950-7. [DOI: 10.1016/j.ijhydene.2014.10.067] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
126 Kim SH, Che CA, Jeong GT, Kim SK. The effect on single and combined stresses for biomass and lipid production from Nannochloris atomus using two phase culture system. J Biotechnol 2021;326:40-7. [PMID: 33359212 DOI: 10.1016/j.jbiotec.2020.12.009] [Reference Citation Analysis]
127 Holdmann C, Schmid-staiger U, Hirth T. Outdoor microalgae cultivation at different biomass concentrations — Assessment of different daily and seasonal light scenarios by modeling. Algal Research 2019;38:101405. [DOI: 10.1016/j.algal.2018.101405] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
128 El Shenawy E, Elkelawy M, Bastawissi HA, Taha M, Panchal H, Sadasivuni KK, Thakar N. Effect of cultivation parameters and heat management on the algae species growth conditions and biomass production in a continuous feedstock photobioreactor. Renewable Energy 2020;148:807-15. [DOI: 10.1016/j.renene.2019.10.166] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
129 Pořízka P, Prochazková P, Prochazka D, Sládková L, Novotný J, Petrilak M, Brada M, Samek O, Pilát Z, Zemánek P, Adam V, Kizek R, Novotný K, Kaiser J. Algal biomass analysis by laser-based analytical techniques--a review. Sensors (Basel) 2014;14:17725-52. [PMID: 25251409 DOI: 10.3390/s140917725] [Cited by in Crossref: 43] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
130 Pan S, Jeevanandam J, Danquah MK. Benefits of Algal Extracts in Sustainable Agriculture. In: Hallmann A, Rampelotto PH, editors. Grand Challenges in Algae Biotechnology. Cham: Springer International Publishing; 2019. pp. 501-34. [DOI: 10.1007/978-3-030-25233-5_14] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
131 Hosseinkhani N, Mccauley JI, Ralph PJ. Key challenges for the commercial expansion of ingredients from algae into human food products. Algal Research 2022;64:102696. [DOI: 10.1016/j.algal.2022.102696] [Reference Citation Analysis]
132 Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H. Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnol Biofuels 2018;11:272. [PMID: 30305845 DOI: 10.1186/s13068-018-1275-9] [Cited by in Crossref: 113] [Cited by in F6Publishing: 72] [Article Influence: 28.3] [Reference Citation Analysis]
133 González-delgado Á, Kafarov V, El-halwagi M. Development of a topology of microalgae-based biorefinery: process synthesis and optimization using a combined forward–backward screening and superstructure approach. Clean Techn Environ Policy 2015;17:2213-28. [DOI: 10.1007/s10098-015-0946-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
134 Solovchenko A, Pogosyan S, Chivkunova O, Selyakh I, Semenova L, Voronova E, Scherbakov P, Konyukhov I, Chekanov K, Kirpichnikov M, Lobakova E. Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Research 2014;6:234-41. [DOI: 10.1016/j.algal.2014.01.002] [Cited by in Crossref: 50] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
135 Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids. Front Microbiol 2016;7:546. [PMID: 27199903 DOI: 10.3389/fmicb.2016.00546] [Cited by in Crossref: 199] [Cited by in F6Publishing: 141] [Article Influence: 33.2] [Reference Citation Analysis]
136 Ambati RR, Gogisetty D, Aswathnarayana Gokare R, Ravi S, Bikkina PN, Su Y, Lei B. Botryococcus as an alternative source of carotenoids and its possible applications – an overview. Critical Reviews in Biotechnology 2017;38:541-58. [DOI: 10.1080/07388551.2017.1378997] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
137 Skjånes K, Andersen U, Heidorn T, Borgvang SA. Design and construction of a photobioreactor for hydrogen production, including status in the field. J Appl Phycol 2016;28:2205-23. [PMID: 27471341 DOI: 10.1007/s10811-016-0789-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
138 Knutsen H, Johnsen I, Keizer S, Sørensen M, Roques J, Hedén I, Sundell K, Hagen Ø. Fish welfare, fast muscle cellularity, fatty acid and body-composition of juvenile spotted wolffish (Anarhichas minor) fed a combination of plant proteins and microalgae (Nannochloropsis oceanica). Aquaculture 2019;506:212-23. [DOI: 10.1016/j.aquaculture.2019.03.043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
139 Sedlar DK, Vulin D, Krajačić G, Jukić L. Offshore gas production infrastructure reutilisation for blue energy production. Renewable and Sustainable Energy Reviews 2019;108:159-74. [DOI: 10.1016/j.rser.2019.03.052] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
140 Rotter A, Barbier M, Bertoni F, Bones AM, Cancela ML, Carlsson J, Carvalho MF, Cegłowska M, Chirivella-martorell J, Conk Dalay M, Cueto M, Dailianis T, Deniz I, Díaz-marrero AR, Drakulovic D, Dubnika A, Edwards C, Einarsson H, Erdoǧan A, Eroldoǧan OT, Ezra D, Fazi S, Fitzgerald RJ, Gargan LM, Gaudêncio SP, Gligora Udovič M, Ivošević Denardis N, Jónsdóttir R, Kataržytė M, Klun K, Kotta J, Ktari L, Ljubešić Z, Lukić Bilela L, Mandalakis M, Massa-gallucci A, Matijošytė I, Mazur-marzec H, Mehiri M, Nielsen SL, Novoveská L, Overlingė D, Perale G, Ramasamy P, Rebours C, Reinsch T, Reyes F, Rinkevich B, Robbens J, Röttinger E, Rudovica V, Sabotič J, Safarik I, Talve S, Tasdemir D, Theodotou Schneider X, Thomas OP, Toruńska-sitarz A, Varese GC, Vasquez MI. The Essentials of Marine Biotechnology. Front Mar Sci 2021;8:629629. [DOI: 10.3389/fmars.2021.629629] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
141 Zabed HM, Akter S, Yun J, Zhang G, Zhang Y, Qi X. Biogas from microalgae: Technologies, challenges and opportunities. Renewable and Sustainable Energy Reviews 2020;117:109503. [DOI: 10.1016/j.rser.2019.109503] [Cited by in Crossref: 50] [Cited by in F6Publishing: 16] [Article Influence: 25.0] [Reference Citation Analysis]
142 Colina F, Amaral J, Carbó M, Pinto G, Soares A, Cañal MJ, Valledor L. Genome-wide identification and characterization of CKIN/SnRK gene family in Chlamydomonas reinhardtii. Sci Rep 2019;9:350. [PMID: 30674892 DOI: 10.1038/s41598-018-35625-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
143 Kang HK, Park SB, Kim CH. Effects of dietary supplementation with a chlorella by-product on the growth performance, immune response, intestinal microflora and intestinal mucosal morphology in broiler chickens. J Anim Physiol Anim Nutr 2017;101:208-14. [DOI: 10.1111/jpn.12566] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Jiménez-llanos J, Ramírez-carmona M, Rendón-castrillón L, Ocampo-lópez C. Sustainable biohydrogen production by Chlorella sp. microalgae: A review. International Journal of Hydrogen Energy 2020;45:8310-28. [DOI: 10.1016/j.ijhydene.2020.01.059] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 10.5] [Reference Citation Analysis]
145 Dixon C, Wilken LR. Green microalgae biomolecule separations and recovery. Bioresour Bioprocess 2018;5. [DOI: 10.1186/s40643-018-0199-3] [Cited by in Crossref: 43] [Cited by in F6Publishing: 23] [Article Influence: 10.8] [Reference Citation Analysis]
146 Sirajunnisa AR, Surendhiran D, Kozani PS, Kozani PS, Hamidi M, Cabrera-barjas G, Delattre C. An overview on the role of microalgal metabolites and pigments in apoptosis induction against copious diseases. Algal Research 2021;60:102556. [DOI: 10.1016/j.algal.2021.102556] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
147 Koskimaki JE, Blazier AS, Clarens AF, Papin JA. Computational Models of Algae Metabolism for Industrial Applications. Industrial Biotechnology 2013;9:185-95. [DOI: 10.1089/ind.2013.0012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
148 Moradi kor N, Akbari M, Olfati A. The effects of different levels of Chlorella microalgae on blood biochemical parameters and trace mineral concentrations of laying hens reared under heat stress condition. Int J Biometeorol 2016;60:757-62. [PMID: 26431701 DOI: 10.1007/s00484-015-1071-1] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
149 Singh B, Guldhe A, Singh P, Singh A, Rawat I, Bux F. Sustainable Production of Biofuels from Microalgae Using a Biorefinary Approach. In: Kaushik G, editor. Applied Environmental Biotechnology: Present Scenario and Future Trends. New Delhi: Springer India; 2015. pp. 115-28. [DOI: 10.1007/978-81-322-2123-4_8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
150 Martinez-burgos WJ, de Souza Candeo E, Pedroni Medeiros AB, Cesar de Carvalho J, Oliveira de Andrade Tanobe V, Soccol CR, Sydney EB. Hydrogen: Current advances and patented technologies of its renewable production. Journal of Cleaner Production 2021;286:124970. [DOI: 10.1016/j.jclepro.2020.124970] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 18.0] [Reference Citation Analysis]
151 Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 2012;96:631-45. [PMID: 22996277 DOI: 10.1007/s00253-012-4398-0] [Cited by in Crossref: 263] [Cited by in F6Publishing: 178] [Article Influence: 26.3] [Reference Citation Analysis]
152 Lakatos G, Balogh D, Farkas A, Ördög V, Nagy PT, Bíró T, Maróti G. Factors influencing algal photobiohydrogen production in algal-bacterial co-cultures. Algal Research 2017;28:161-71. [DOI: 10.1016/j.algal.2017.10.024] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 3.4] [Reference Citation Analysis]
153 Mccauley JI, Labeeuw L, Jaramillo-madrid AC, Nguyen LN, Nghiem LD, Chaves AV, Ralph PJ. Management of Enteric Methanogenesis in Ruminants by Algal-Derived Feed Additives. Curr Pollution Rep 2020;6:188-205. [DOI: 10.1007/s40726-020-00151-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
154 Ritcharoen W, Powtongsook S, Kangvansaichol K, Pavasant P. Effect of daytime CO 2 supplement on productivity and biochemical composition of Scenedesmus armatus under outdoor cultivation. Preparative Biochemistry and Biotechnology 2015;46:267-73. [DOI: 10.1080/10826068.2015.1015569] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
155 Wang S, Cao M, Wang B, Deng R, Gao Y, Liu P. Optimization of growth requirements and scale‐up cultivation of freshwater algae Desmodesmus armatus using response surface methodology. Aquac Res 2019;50:3313-25. [DOI: 10.1111/are.14290] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
156 Frenkel J, Vyverman W, Pohnert G. Pheromone signaling during sexual reproduction in algae. Plant J 2014;79:632-44. [PMID: 24597605 DOI: 10.1111/tpj.12496] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 5.1] [Reference Citation Analysis]