BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang YL, Ashwell MS, Fry RS, Lloyd KE, Flowers WL, Spears JW. Effect of dietary copper amount and source on copper metabolism and oxidative stress of weanling pigs in short-term feeding. J Anim Sci 2015;93:2948-55. [PMID: 26115281 DOI: 10.2527/jas.2014-8082] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhang F, Zheng W, Xue Y, Yao W. Suhuai suckling piglet hindgut microbiome-metabolome responses to different dietary copper levels. Appl Microbiol Biotechnol 2019;103:853-68. [PMID: 30535578 DOI: 10.1007/s00253-018-9533-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
2 Li M, Tang W, Liao P, Li Y. Evaluating the Influence of Different Recommended Dietary Levels of Cu and Zn on Finishing Pigs. Front Vet Sci 2022;8:770195. [DOI: 10.3389/fvets.2021.770195] [Reference Citation Analysis]
3 Jiao L, Lin F, Cao S, Wang C, Wu H, Shu M, Hu C. Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zinc- loaded montmorillonite. J Anim Sci Biotechnol 2017;8:27. [PMID: 28331609 DOI: 10.1186/s40104-017-0156-6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
4 Liao J, Hu Z, Li Q, Li H, Chen W, Huo H, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z. Endoplasmic Reticulum Stress Contributes to Copper-Induced Pyroptosis via Regulating the IRE1α-XBP1 Pathway in Pig Jejunal Epithelial Cells. J Agric Food Chem . [DOI: 10.1021/acs.jafc.1c07927] [Reference Citation Analysis]
5 Shannon MC, Hill GM. Trace Mineral Supplementation for the Intestinal Health of Young Monogastric Animals. Front Vet Sci 2019;6:73. [PMID: 30918894 DOI: 10.3389/fvets.2019.00073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
6 Carpenter CB, Woodworth JC, DeRouchey JM, Tokach MD, Goodband RD, Dritz SS, Wu F, Usry JL. Effects of increasing copper from tri-basic copper chloride or a copper-methionine chelate on growth performance of nursery pigs. Transl Anim Sci 2019;3:369-76. [PMID: 32704807 DOI: 10.1093/tas/txy091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
7 Lin G, Guo Y, Liu B, Wang R, Su X, Yu D, He P. Optimal dietary copper requirements and relative bioavailability for weanling pigs fed either copper proteinate or tribasic copper chloride. J Anim Sci Biotechnol 2020;11:54. [PMID: 32477516 DOI: 10.1186/s40104-020-00457-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
8 Bacou E, Walk C, Rider S, Litta G, Perez-Calvo E. Dietary Oxidative Distress: A Review of Nutritional Challenges as Models for Poultry, Swine and Fish. Antioxidants (Basel) 2021;10:525. [PMID: 33801670 DOI: 10.3390/antiox10040525] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Wang J, Zhu X, Guo Y, Wang Z, Zhao B, Yin Y, Liu G. Influence of Dietary Copper on Serum Growth-Related Hormone Levels and Growth Performance of Weanling Pigs. Biol Trace Elem Res 2016;172:134-9. [PMID: 26631054 DOI: 10.1007/s12011-015-0574-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
10 Zheng P, Pu B, Yu B, He J, Yu J, Mao X, Luo Y, Luo J, Huang Z, Luo C, Wang S, Chen D. The differences between copper sulfate and tribasic copper chloride on growth performance, redox status, deposition in tissues of pigs, and excretion in feces. Asian-Australas J Anim Sci 2018;31:873-80. [PMID: 29268575 DOI: 10.5713/ajas.17.0516] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
11 Linder MC. Copper Homeostasis in Mammals, with Emphasis on Secretion and Excretion. A Review. Int J Mol Sci 2020;21:E4932. [PMID: 32668621 DOI: 10.3390/ijms21144932] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
12 Li R, Wen Y, Lin G, Meng C, He P, Wang F. Different Sources of Copper Effect on Intestinal Epithelial Cell: Toxicity, Oxidative Stress, and Metabolism. Metabolites 2019;10:E11. [PMID: 31877957 DOI: 10.3390/metabo10010011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wei M, Huang Q, Dai Y, Zhou H, Cui Y, Song W, Di D, Zhang R, Li C, Wang Q, Jing T. Manganese, iron, copper, and selenium co-exposure and osteoporosis risk in Chinese adults. Journal of Trace Elements in Medicine and Biology 2022;72:126989. [DOI: 10.1016/j.jtemb.2022.126989] [Reference Citation Analysis]
14 Peng CC, Yan JY, Dong B, Zhu L, Tian YY, Gong LM. Effects of graded levels of cupric citrate on growth performance, antioxidant status, serum lipid metabolites and immunity, and tissue residues of trace elements in weaned pigs. Asian-Australas J Anim Sci 2017;30:538-45. [PMID: 27383797 DOI: 10.5713/ajas.16.0182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
15 Espinosa CD, Fry RS, Kocher ME, Stein HH. Effects of copper hydroxychloride and distillers dried grains with solubles on intestinal microbial concentration and apparent ileal and total tract digestibility of energy and nutrients by growing pigs1. J Anim Sci 2019;97:4904-11. [PMID: 31680139 DOI: 10.1093/jas/skz340] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
16 Espinosa CD, Stein HH. Digestibility and metabolism of copper in diets for pigs and influence of dietary copper on growth performance, intestinal health, and overall immune status: a review. J Anim Sci Biotechnol 2021;12:13. [PMID: 33431053 DOI: 10.1186/s40104-020-00533-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
17 Hill GM, Shannon MC. Copper and Zinc Nutritional Issues for Agricultural Animal Production. Biol Trace Elem Res 2019;188:148-59. [PMID: 30612303 DOI: 10.1007/s12011-018-1578-5] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
18 Zhang Y, Zhou J, Dong Z, Li G, Wang J, Li Y, Wan D, Yang H, Yin Y. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets. Front Microbiol 2019;10:2808. [PMID: 31921011 DOI: 10.3389/fmicb.2019.02808] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
19 Villagómez-Estrada S, Pérez JF, Darwich L, Vidal A, van Kuijk S, Melo-Durán D, Solà-Oriol D. Effects of copper and zinc sources and inclusion levels of copper on weanling pig performance and intestinal microbiota. J Anim Sci 2020;98:skaa117. [PMID: 32277238 DOI: 10.1093/jas/skaa117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
20 Zhang F, Zheng W, Guo R, Yao W. Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats. J Microbiol 2017;55:694-702. [PMID: 28865069 DOI: 10.1007/s12275-017-6627-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
21 Kim M, Hosseindoust A, Choi Y, Lee J, Kim K, Kim T, Cho H, Kang W, Chae B. Effects of Hot-Melt Extruded Nano-Copper as an Alternative for the Pharmacological Dose of Copper Sulfate in Weanling Pigs. Biol Trace Elem Res 2021;199:2925-35. [PMID: 33078307 DOI: 10.1007/s12011-020-02426-y] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Villagómez-Estrada S, Pérez JF, van Kuijk S, Melo-Durán D, Karimirad R, Solà-Oriol D. Effects of two zinc supplementation levels and two zinc and copper sources with different solubility characteristics on the growth performance, carcass characteristics and digestibility of growing-finishing pigs. J Anim Physiol Anim Nutr (Berl) 2021;105:59-71. [PMID: 32969109 DOI: 10.1111/jpn.13447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
23 Stalke A, Pfister ED, Baumann U, Illig T, Reischl E, Sandbothe M, Vajen B, Huge N, Schlegelberger B, von Neuhoff N, Skawran B. MTF1 binds to metal-responsive element e within the ATP7B promoter and is a strong candidate in regulating the ATP7B expression. Ann Hum Genet 2020;84:195-200. [PMID: 31596515 DOI: 10.1111/ahg.12355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Di Giancamillo A, Rossi R, Martino PA, Aidos L, Maghin F, Domeneghini C, Corino C. Copper sulphate forms in piglet diets: Microbiota, intestinal morphology and enteric nervous system glial cells. Anim Sci J 2018;89:616-24. [PMID: 29231279 DOI: 10.1111/asj.12948] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
25 Nguyen HTT, Morgan N, Roberts JR, Swick RA, Toghyani M. Copper hydroxychloride is more efficacious than copper sulfate in improving broiler chicken's growth performance, both at nutritional and growth-promoting levels. Poult Sci 2020;99:6964-73. [PMID: 33248612 DOI: 10.1016/j.psj.2020.09.053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]