BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zang H, Wu W, Qi L, Tan W, Nagarkatti P, Nagarkatti M, Wang X, Cui T. Autophagy Inhibition Enables Nrf2 to Exaggerate the Progression of Diabetic Cardiomyopathy in Mice. Diabetes 2020;69:2720-34. [PMID: 32948607 DOI: 10.2337/db19-1176] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Dodson M, Shakya A, Anandhan A, Chen J, Garcia JG, Zhang DD. NRF2 and Diabetes: The Good, the Bad, and the Complex. Diabetes 2022;71:2463-2476. [DOI: 10.2337/db22-0623] [Reference Citation Analysis]
2 Zhang Z, Chen L, Chen X, Qin Y, Tian C, Dai X, Meng R, Zhong Y, Liang W, Shen C, Zhang J, Zhang B, Wei X. Exosomes derived from human umbilical cord mesenchymal stem cells (HUCMSC-EXO) regulate autophagy through AMPK-ULK1 signaling pathway to ameliorate diabetic cardiomyopathy. Biochemical and Biophysical Research Communications 2022;632:195-203. [DOI: 10.1016/j.bbrc.2022.10.001] [Reference Citation Analysis]
3 Mathis BJ, Kato H, Hiramatsu Y. Induction of Cardiac Pathology: Endogenous versus Exogenous Nrf2 Upregulation. Cells 2022;11:3855. [DOI: 10.3390/cells11233855] [Reference Citation Analysis]
4 Du S, Shi H, Xiong L, Wang P, Shi Y. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front Endocrinol 2022;13:1011669. [DOI: 10.3389/fendo.2022.1011669] [Reference Citation Analysis]
5 Li H, Zhang L, Zhang L, Han R. Autophagy in striated muscle diseases. Front Cardiovasc Med 2022;9:1000067. [PMID: 36312227 DOI: 10.3389/fcvm.2022.1000067] [Reference Citation Analysis]
6 Kandula N, Kumar S, Mandlem VKK, Siddabathuni A, Singh S, Kosuru R, Durand G. Role of AMPK in Myocardial Ischemia-Reperfusion Injury-Induced Cell Death in the Presence and Absence of Diabetes. Oxidative Medicine and Cellular Longevity 2022;2022:1-18. [DOI: 10.1155/2022/7346699] [Reference Citation Analysis]
7 Wu W, Hendrix A, Nair S, Cui T. Nrf2-Mediated Dichotomy in the Vascular System: Mechanistic and Therapeutic Perspective. Cells 2022;11:3042. [DOI: 10.3390/cells11193042] [Reference Citation Analysis]
8 Chen Q, Ji H, Lin Y, Chen Z, Liu Y, Jin L, Peng R. LncRNAs regulate ferroptosis to affect diabetes and its complications. Front Physiol 2022;13:993904. [DOI: 10.3389/fphys.2022.993904] [Reference Citation Analysis]
9 Wu X, Huang J, Tang J, Sun Y, Zhao G, Yan C, Liu Z, Yi W, Xu S, Yu X. Isoginkgetin, a bioactive constituent from Ginkgo Biloba, protects against obesity-induced cardiomyopathy via enhancing Nrf2/ARE signaling. Redox Biol 2022;57:102485. [PMID: 36162256 DOI: 10.1016/j.redox.2022.102485] [Reference Citation Analysis]
10 Wang K, Chen XZ, Wang YH, Cheng XL, Zhao Y, Zhou LY, Wang K. Emerging roles of ferroptosis in cardiovascular diseases. Cell Death Discov 2022;8:394. [PMID: 36127318 DOI: 10.1038/s41420-022-01183-2] [Reference Citation Analysis]
11 Yan F, Li K, Xing W, Dong M, Yi M, Zhang H, Li T. Role of Iron-Related Oxidative Stress and Mitochondrial Dysfunction in Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity 2022;2022:1-12. [DOI: 10.1155/2022/5124553] [Reference Citation Analysis]
12 Han R, Huang H, Xia W, Liu J, Luo H, Tang J, Xia Z. Perspectives for Forkhead box transcription factors in diabetic cardiomyopathy: Their therapeutic potential and possible effects of salvianolic acids. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.951597] [Reference Citation Analysis]
13 Yin M, Zhou L, Ji Y, Lu R, Ji W, Jiang G, Ma J, Song X. In silico identification and verification of ferroptosis-related genes in type 2 diabetic islets. Front Endocrinol 2022;13:946492. [DOI: 10.3389/fendo.2022.946492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kim J, Mondaca-ruff D, Singh S, Wang Y. SIRT1 and Autophagy: Implications in Endocrine Disorders. Front Endocrinol 2022;13:930919. [DOI: 10.3389/fendo.2022.930919] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Peng M, Fu Y, Wu C, Zhang Y, Ren H, Zhou S. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol 2022;13:907757. [DOI: 10.3389/fendo.2022.907757] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Nguyen V, Zhang Y, Gao C, Cao X, Tian Y, Carver W, Kiaris H, Cui T, Tan W. The Spike Protein of SARS-CoV-2 Impairs Lipid Metabolism and Increases Susceptibility to Lipotoxicity: Implication for a Role of Nrf2. Cells 2022;11:1916. [PMID: 35741045 DOI: 10.3390/cells11121916] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Peng Y, Yang Q, Gao S, Liu Z, Kong W, Bian X, Li Z, Ye J. IL-6 protects cardiomyocytes from oxidative stress at the early stage of LPS-induced sepsis. Biochemical and Biophysical Research Communications 2022;603:144-52. [DOI: 10.1016/j.bbrc.2022.03.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Nguyen V, Zhang Y, Gao C, Cao X, Tian Y, Carver W, Kiaris H, Cui T, Tan W. The Spike protein of SARS-CoV-2 impairs lipid metabolism and increases susceptibility to lipotoxicity: implication for a role of Nrf2.. [DOI: 10.1101/2022.04.19.488806] [Reference Citation Analysis]
19 Boťanská B, Dovinová I, Barančík M. The Interplay between Autophagy and Redox Signaling in Cardiovascular Diseases. Cells 2022;11:1203. [DOI: 10.3390/cells11071203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Yang X, Yang Y. Ferroptosis as a Novel Therapeutic Target for Diabetes and Its Complications. Front Endocrinol 2022;13:853822. [DOI: 10.3389/fendo.2022.853822] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Fang Q, Liu X, Ding J, Zhang Z, Chen G, Du T, Wang Y, Xu R, Li T. Soluble Epoxide Hydrolase Inhibition Protected against Diabetic Cardiomyopathy through Inducing Autophagy and Reducing Apoptosis Relying on Nrf2 Upregulation and Transcription Activation. Oxidative Medicine and Cellular Longevity 2022;2022:1-20. [DOI: 10.1155/2022/3773415] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Peng Q, Liu H, Luo Z, Zhao H, Wang X, Guan X. Effect of autophagy on ferroptosis in foam cells via Nrf2. Mol Cell Biochem 2022. [PMID: 35195807 DOI: 10.1007/s11010-021-04347-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Muñoz-Córdova F, Hernández-Fuentes C, Lopez-Crisosto C, Troncoso MF, Calle X, Guerrero-Moncayo A, Gabrielli L, Chiong M, Castro PF, Lavandero S. Novel Insights Into the Pathogenesis of Diabetic Cardiomyopathy and Pharmacological Strategies. Front Cardiovasc Med 2021;8:707336. [PMID: 35004869 DOI: 10.3389/fcvm.2021.707336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Sun X, Sun P, Zhen D, Xu X, Yang L, Fu D, Wei C, Niu X, Tian J, Li H. Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicology and Applied Pharmacology 2022. [DOI: 10.1016/j.taap.2022.115902] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
25 Dodson M, Chen J, Shakya A, Anandhan A, Zhang DD. The dark side of NRF2 in arsenic carcinogenesis. Advances in Pharmacology 2022. [DOI: 10.1016/bs.apha.2022.08.002] [Reference Citation Analysis]
26 Li S, Zhang X. Iron in Cardiovascular Disease: Challenges and Potentials. Front Cardiovasc Med 2021;8:707138. [PMID: 34917655 DOI: 10.3389/fcvm.2021.707138] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
27 Luo MY, Su JH, Gong SX, Liang N, Huang WQ, Chen W, Wang AP, Tian Y. Ferroptosis: New Dawn for Overcoming the Cardio-Cerebrovascular Diseases. Front Cell Dev Biol 2021;9:733908. [PMID: 34858973 DOI: 10.3389/fcell.2021.733908] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
28 Huang F, Yang R, Xiao Z, Xie Y, Lin X, Zhu P, Zhou P, Lu J, Zheng S. Targeting Ferroptosis to Treat Cardiovascular Diseases: A New Continent to Be Explored. Front Cell Dev Biol 2021;9:737971. [PMID: 34527678 DOI: 10.3389/fcell.2021.737971] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
29 Hu H, Chen Y, Jing L, Zhai C, Shen L. The Link Between Ferroptosis and Cardiovascular Diseases: A Novel Target for Treatment. Front Cardiovasc Med 2021;8:710963. [PMID: 34368260 DOI: 10.3389/fcvm.2021.710963] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
30 Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FX, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021;9:701788. [PMID: 34307381 DOI: 10.3389/fcell.2021.701788] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
31 Wu W, Qin Q, Ding Y, Zang H, Li DS, Nagarkatti M, Nagarkatti P, Wang W, Wang X, Cui T. Autophagy Controls Nrf2-Mediated Dichotomy in Pressure Overloaded Hearts. Front Physiol 2021;12:673145. [PMID: 34054582 DOI: 10.3389/fphys.2021.673145] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med. 2021;169:317-342. [PMID: 33910093 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 29.0] [Reference Citation Analysis]
33 Tao J, Chen H, Wang YJ, Qiu JX, Meng QQ, Zou RJ, Li L, Huang JG, Zhao ZK, Huang YL, Zhang HF, Zheng JM. Ketogenic Diet Suppressed T-Regulatory Cells and Promoted Cardiac Fibrosis via Reducing Mitochondria-Associated Membranes and Inhibiting Mitochondrial Function. Oxid Med Cell Longev 2021;2021:5512322. [PMID: 33959215 DOI: 10.1155/2021/5512322] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
34 Zhai Z, Zou P, Liu F, Xia Z, Li J. Ferroptosis Is a Potential Novel Diagnostic and Therapeutic Target for Patients With Cardiomyopathy. Front Cell Dev Biol 2021;9:649045. [PMID: 33869204 DOI: 10.3389/fcell.2021.649045] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]