BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chiappetta DA, Hocht C, Opezzo JA, Sosnik A. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine (Lond). 2013;8:223-237. [PMID: 23173734 DOI: 10.2217/nnm.12.104] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Moshe H, Davizon Y, Menaker Raskin M, Sosnik A. Novel poly(vinyl alcohol)-based amphiphilic nanogels by non-covalent boric acid crosslinking of polymeric micelles. Biomater Sci 2017;5:2295-309. [PMID: 29019482 DOI: 10.1039/c7bm00675f] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
2 Belgamwar AV, Khan SA, Yeole PG. Intranasal dolutegravir sodium loaded nanoparticles of hydroxypropyl-beta-cyclodextrin for brain delivery in Neuro-AIDS. Journal of Drug Delivery Science and Technology 2019;52:1008-20. [DOI: 10.1016/j.jddst.2019.06.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
3 Tshweu L, Katata L, Kalombo L, Chiappetta DA, Hocht C, Sosnik A, Swai H. Enhanced oral bioavailability of the antiretroviral efavirenz encapsulated in poly(epsilon-caprolactone) nanoparticles by a spray-drying method. Nanomedicine (Lond) 2014;9:1821-33. [PMID: 24364871 DOI: 10.2217/nnm.13.167] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
4 Rojekar S, Fotooh Abadi L, Pai R, Mahajan K, Kulkarni S, Vavia PR. Multi-organ targeting of HIV-1 viral reservoirs with etravirine loaded nanostructured lipid carrier: An in-vivo proof of concept. Eur J Pharm Sci 2021;164:105916. [PMID: 34166780 DOI: 10.1016/j.ejps.2021.105916] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Toscanini MA, Limeres MJ, Garrido AV, Cagel M, Bernabeu E, Moretton MA, Chiappetta DA, Cuestas ML. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. Journal of Drug Delivery Science and Technology 2021;66:102927. [DOI: 10.1016/j.jddst.2021.102927] [Reference Citation Analysis]
6 Belgamwar A, Khan S, Yeole P. Intranasal chitosan-g-HPβCD nanoparticles of efavirenz for the CNS targeting. Artif Cells Nanomed Biotechnol 2018;46:374-86. [PMID: 28423949 DOI: 10.1080/21691401.2017.1313266] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 4.2] [Reference Citation Analysis]
7 Schlachet I, Moshe Halamish H, Sosnik A. Mixed Amphiphilic Polymeric Nanoparticles of Chitosan, Poly(vinyl alcohol) and Poly(methyl methacrylate) for Intranasal Drug Delivery: A Preliminary In Vivo Study. Molecules 2020;25:E4496. [PMID: 33008001 DOI: 10.3390/molecules25194496] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Sosnik A, Carcaboso AM. Nanomedicines in the future of pediatric therapy. Adv Drug Deliv Rev 2014;73:140-61. [PMID: 24819219 DOI: 10.1016/j.addr.2014.05.004] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
9 Alavi M, Asare-Addo K, Nokhodchi A. Lectin Protein as a Promising Component to Functionalize Micelles, Liposomes and Lipid NPs against Coronavirus. Biomedicines 2020;8:E580. [PMID: 33297444 DOI: 10.3390/biomedicines8120580] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review. Adv Drug Deliv Rev 2013;65:1828-51. [PMID: 24055628 DOI: 10.1016/j.addr.2013.09.002] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 8.1] [Reference Citation Analysis]
11 Gendelman HE, Anantharam V, Bronich T, Ghaisas S, Jin H, Kanthasamy AG, Liu X, McMillan J, Mosley RL, Narasimhan B, Mallapragada SK. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine 2015;11:751-67. [PMID: 25645958 DOI: 10.1016/j.nano.2014.12.014] [Cited by in Crossref: 69] [Cited by in F6Publishing: 47] [Article Influence: 9.9] [Reference Citation Analysis]
12 Salay LC, Prazeres EA, Marín Huachaca NS, Lemos M, Piccoli JP, Sanches PRS, Cilli EM, Santos RS, Feitosa E. Molecular interactions between Pluronic F127 and the peptide tritrpticin in aqueous solution. Colloid Polym Sci 2018;296:809-17. [DOI: 10.1007/s00396-018-4304-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Talal J, Abutbul-ionita I, Schlachet I, Danino D, Sosnik A. Amphiphilic Nanoparticle-in-Nanoparticle Drug Delivery Systems Exhibiting Cross-Linked Inorganic Rate-Controlling Domains. Chem Mater 2017;29:873-85. [DOI: 10.1021/acs.chemmater.6b04922] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
14 Kaushik A, Jayant RD, Nair M. Nanomedicine for neuroHIV/AIDS management. Nanomedicine (Lond) 2018;13:669-73. [PMID: 29485351 DOI: 10.2217/nnm-2018-0005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
15 Schlachet I, Sosnik A. Mixed Mucoadhesive Amphiphilic Polymeric Nanoparticles Cross a Model of Nasal Septum Epithelium in Vitro. ACS Appl Mater Interfaces 2019;11:21360-71. [PMID: 31124655 DOI: 10.1021/acsami.9b04766] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
16 Sosnik A, das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Progress in Polymer Science 2014;39:2030-75. [DOI: 10.1016/j.progpolymsci.2014.07.010] [Cited by in Crossref: 287] [Cited by in F6Publishing: 215] [Article Influence: 35.9] [Reference Citation Analysis]
17 Patil PH, Mahajan HS. Mixed micelles for bioavailability enhancement of nelfinavir mesylate: In vitro characterisation and In vivo pharmacokinetic study. Materials Technology 2018;33:793-802. [DOI: 10.1080/10667857.2018.1511317] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Das MK, Sarma A, Chakraborty T. Nano-ART and NeuroAIDS. Drug Deliv Transl Res 2016;6:452-72. [PMID: 27137528 DOI: 10.1007/s13346-016-0293-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
19 Khan SA, Rehman S, Nabi B, Iqubal A, Nehal N, Fahmy UA, Kotta S, Baboota S, Md S, Ali J. Boosting the Brain Delivery of Atazanavir through Nanostructured Lipid Carrier-Based Approach for Mitigating NeuroAIDS. Pharmaceutics 2020;12:E1059. [PMID: 33172119 DOI: 10.3390/pharmaceutics12111059] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Perteghella S, Rassu G, Gavini E, Obinu A, Bari E, Mandracchia D, Bonferoni MC, Giunchedi P, Torre ML. Crocetin as New Cross-Linker for Bioactive Sericin Nanoparticles. Pharmaceutics 2021;13:680. [PMID: 34065101 DOI: 10.3390/pharmaceutics13050680] [Reference Citation Analysis]
21 Aggarwal N, Sachin, Nabi B, Aggarwal S, Baboota S, Ali J. Nano-based drug delivery system: a smart alternative towards eradication of viral sanctuaries in management of NeuroAIDS. Drug Deliv Transl Res 2021. [PMID: 33486689 DOI: 10.1007/s13346-021-00907-8] [Reference Citation Analysis]
22 Bukchin A, Sanchez-navarro M, Carrera A, Teixidó M, Carcaboso AM, Giralt E, Sosnik A. Amphiphilic Polymeric Nanoparticles Modified with a Retro-Enantio Peptide Shuttle Target the Brain of Mice. Chem Mater 2020;32:7679-93. [DOI: 10.1021/acs.chemmater.0c01696] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
23 Sued O, Figueroa MI, Cahn P. Clinical challenges in HIV/AIDS: Hints for advancing prevention and patient management strategies. Adv Drug Deliv Rev 2016;103:5-19. [PMID: 27117711 DOI: 10.1016/j.addr.2016.04.016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
24 Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release 2016;224:86-102. [PMID: 26772877 DOI: 10.1016/j.jconrel.2016.01.008] [Cited by in Crossref: 173] [Cited by in F6Publishing: 144] [Article Influence: 28.8] [Reference Citation Analysis]
25 Sosnik A. Tissue-based in vitro and ex vivo models for nasal permeability studies. Concepts and Models for Drug Permeability Studies. Elsevier; 2016. pp. 237-54. [DOI: 10.1016/b978-0-08-100094-6.00014-6] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
26 Boese AS, Majer A, Saba R, Booth SA. Small RNA drugs for prion disease: a new frontier. Expert Opinion on Drug Discovery 2013;8:1265-84. [DOI: 10.1517/17460441.2013.818976] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
27 Kumar L, Verma S, Prasad DN, Bhardwaj A, Vaidya B, Jain AK. Nanotechnology: a magic bullet for HIV AIDS treatment. Artif Cells Nanomed Biotechnol 2015;43:71-86. [PMID: 24564348 DOI: 10.3109/21691401.2014.883400] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
28 Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery 2017;15:93-114. [DOI: 10.1080/17425247.2017.1360863] [Cited by in Crossref: 59] [Cited by in F6Publishing: 47] [Article Influence: 11.8] [Reference Citation Analysis]
29 Elezaby RS, Gad HA, Metwally AA, Geneidi AS, Awad GA. Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery. J Control Release 2017;261:43-61. [PMID: 28648865 DOI: 10.1016/j.jconrel.2017.06.019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 5.2] [Reference Citation Analysis]
30 Sarma A, Das MK. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. Mol Biomed 2020;1:15. [PMID: 34765998 DOI: 10.1186/s43556-020-00019-8] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Sosnik A, Menaker Raskin M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol Adv 2015;33:1380-92. [PMID: 25597531 DOI: 10.1016/j.biotechadv.2015.01.003] [Cited by in Crossref: 82] [Cited by in F6Publishing: 63] [Article Influence: 11.7] [Reference Citation Analysis]
32 Bukchin A, Kuplennik N, Carcaboso ÁM, Sosnik A. Effect of growing glycosylation extents on the self-assembly and active targeting in vitro of branched poly(ethylene oxide)-poly(propylene oxide) block copolymers. Applied Materials Today 2018;11:57-69. [DOI: 10.1016/j.apmt.2018.01.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
33 Giacalone G, Hillaireau H, Fattal E. Improving bioavailability and biodistribution of anti-HIV chemotherapy. Eur J Pharm Sci 2015;75:40-53. [PMID: 25937367 DOI: 10.1016/j.ejps.2015.04.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
34 Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021;334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
35 Schlachet I, Sosnik A. Protoporphyrin IX-modified chitosan-g-oligo(NiPAAm) polymeric micelles: from physical stabilization to permeability characterization in vitro. Biomater Sci 2016;5:128-40. [PMID: 27905575 DOI: 10.1039/c6bm00667a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Moretton MA, Hocht C, Taira C, Sosnik A. Rifampicin-loaded ‘flower-like’ polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid. Nanomedicine 2014;9:1635-50. [DOI: 10.2217/nnm.13.154] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
37 Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. Journal of Drug Delivery Science and Technology 2021;64:102642. [DOI: 10.1016/j.jddst.2021.102642] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Rajpoot K. Nanotechnology-based Targeting of Neurodegenerative Disorders: A Promising Tool for Efficient Delivery of Neuromedicines. Curr Drug Targets 2020;21:819-36. [PMID: 31906836 DOI: 10.2174/1389450121666200106105633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Crawford L, Rosch J, Putnam D. Concepts, technologies, and practices for drug delivery past the blood–brain barrier to the central nervous system. Journal of Controlled Release 2016;240:251-66. [DOI: 10.1016/j.jconrel.2015.12.041] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 6.7] [Reference Citation Analysis]
40 Sosnik A, Shabo RB, Halamish HM. Cannabidiol-Loaded Mixed Polymeric Micelles of Chitosan/Poly(Vinyl Alcohol) and Poly(Methyl Methacrylate) for Trans-Corneal Delivery. Pharmaceutics 2021;13:2142. [PMID: 34959427 DOI: 10.3390/pharmaceutics13122142] [Reference Citation Analysis]
41 Monroe M, Flexner C, Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioeng Transl Med 2018;3:102-23. [PMID: 30065966 DOI: 10.1002/btm2.10096] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
42 Takalani F, Kumar P, Kondiah PPD, Choonara YE, Pillay V. Lipid-drug conjugates and associated carrier strategies for enhanced antiretroviral drug delivery. Pharm Dev Technol 2020;25:267-80. [PMID: 31744408 DOI: 10.1080/10837450.2019.1694037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
43 Soundararajan D, Ramana LN, Shankaran P, Krishnan UM. Nanoparticle-based strategies to target HIV-infected cells. Colloids Surf B Biointerfaces 2022;213:112405. [PMID: 35255375 DOI: 10.1016/j.colsurfb.2022.112405] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Jadhav S, Yenorkar N, Bondre R, Karemore M, Bali N. Nanomedicines encountering HIV dementia: A guiding star for neurotherapeutics. Journal of Drug Delivery Science and Technology 2022;71:103315. [DOI: 10.1016/j.jddst.2022.103315] [Reference Citation Analysis]
45 Roma MI, Hocht C, Chiappetta DA, Di Gennaro SS, Minoia JM, Bramuglia GF, Rubio MC, Sosnik A, Peroni RN. Tetronic® 904-containing polymeric micelles overcome the overexpression of ABCG2 in the blood-brain barrier of rats and boost the penetration of the antiretroviral efavirenz into the CNS. Nanomedicine (Lond) 2015;10:2325-37. [PMID: 26252052 DOI: 10.2217/NNM.15.77] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
46 Shao J, Kraft JC, Li B, Yu J, Freeling J, Koehn J, Ho RJ. Nanodrug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS. Nanomedicine (Lond) 2016;11:545-64. [PMID: 26892323 DOI: 10.2217/nnm.16.1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
47 Cao S, Woodrow KA. Nanotechnology approaches to eradicating HIV reservoirs. Eur J Pharm Biopharm 2019;138:48-63. [PMID: 29879528 DOI: 10.1016/j.ejpb.2018.06.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
48 Fang F, Zou D, Wang W, Yin Y, Yin T, Hao S, Wang B, Wang G, Wang Y. Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. Mater Sci Eng C Mater Biol Appl 2017;76:1316-27. [PMID: 28482500 DOI: 10.1016/j.msec.2017.02.056] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
49 Cao S, Jiang Y, Zhang H, Kondza N, Woodrow KA. Core-shell nanoparticles for targeted and combination antiretroviral activity in gut-homing T cells. Nanomedicine 2018;14:2143-53. [PMID: 29964219 DOI: 10.1016/j.nano.2018.06.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
50 Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017;113:211-28. [PMID: 28087380 DOI: 10.1016/j.ejpb.2016.12.019] [Cited by in Crossref: 157] [Cited by in F6Publishing: 131] [Article Influence: 31.4] [Reference Citation Analysis]
51 Edagwa BJ, Zhou T, McMillan JM, Liu XM, Gendelman HE. Development of HIV reservoir targeted long acting nanoformulated antiretroviral therapies. Curr Med Chem 2014;21:4186-98. [PMID: 25174930 DOI: 10.2174/0929867321666140826114135] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 8.3] [Reference Citation Analysis]
52 Bothiraja C, Kapare HS, Pawar AP, Shaikh KS. Development of plumbagin-loaded phospholipid–Tween ® 80 mixed micelles: formulation, optimization, effect on breast cancer cells and human blood/serum compatibility testing. Therapeutic Delivery 2013;4:1247-59. [DOI: 10.4155/tde.13.92] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
53 Cuestas ML, Glisoni RJ, Mathet VL, Sosnik A. Lactosylated poly(ethylene oxide)–poly(propylene oxide) block copolymers for potential active targeting: synthesis and physicochemical and self-aggregation characterization. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-012-1389-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
54 Gomes MJ, Neves Jd, Sarmento B. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine 2014;9:1757-69. [PMID: 24741312 DOI: 10.2147/IJN.S45886] [Cited by in Crossref: 6] [Cited by in F6Publishing: 18] [Article Influence: 0.8] [Reference Citation Analysis]
55 Glisoni RJ, Sosnik A. Novel Poly(Ethylene Oxide)- b -Poly(Propylene Oxide) Copolymer-Glucose Conjugate by the Microwave-Assisted Ring Opening of a Sugar Lactone: Novel Poly(Ethylene Oxide)- b -Poly(Propylene Oxide) …. Macromol Biosci 2014;14:1639-51. [DOI: 10.1002/mabi.201400235] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
56 Tatham LM, Rannard SP, Owen A. Nanoformulation strategies for the enhanced oral bioavailability of antiretroviral therapeutics. Ther Deliv 2015;6:469-90. [PMID: 25996045 DOI: 10.4155/tde.15.4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
57 Glisoni RJ, Quintana L SS, Molina M, Calderón M, Moglioni AG, Sosnik A. Chitosan-g-oligo(epsilon-caprolactone) polymeric micelles: microwave-assisted synthesis and physicochemical and cytocompatibility characterization. J Mater Chem B 2015;3:4853-64. [DOI: 10.1039/c5tb00594a] [Cited by in Crossref: 19] [Article Influence: 2.7] [Reference Citation Analysis]
58 Sheth U, Tiwari S, Bahadur A. Preparation and characterization of anti-tubercular drugs encapsulated in polymer micelles. Journal of Drug Delivery Science and Technology 2018;48:422-8. [DOI: 10.1016/j.jddst.2018.10.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
59 Desai P, Shete H, Adnaik R, Disouza J, Patravale V. Therapeutic targets and delivery challenges for Alzheimer’s disease. World J Pharmacol 2015; 4(3): 236-264 [DOI: 10.5497/wjp.v4.i3.236] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
60 Jones E, Ojewole E, Kalhapure R, Govender T. In vitro comparative evaluation of monolayered multipolymeric films embedded with didanosine-loaded solid lipid nanoparticles: a potential buccal drug delivery system for ARV therapy. Drug Development and Industrial Pharmacy 2014;40:669-79. [DOI: 10.3109/03639045.2014.892957] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
61 Gorain B, Choudhury H, Patro Sisinthy S, Kesharwani P. Polymeric micelle-based drug delivery systems for tuberculosis treatment. Nanotechnology Based Approaches for Tuberculosis Treatment. Elsevier; 2020. pp. 175-91. [DOI: 10.1016/b978-0-12-819811-7.00011-4] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
62 Kumarasamy M, Sosnik A. The Nose-To-Brain Transport of Polymeric Nanoparticles Is Mediated by Immune Sentinels and Not by Olfactory Sensory Neurons. Adv Biosyst 2019;3:e1900123. [PMID: 32648679 DOI: 10.1002/adbi.201900123] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
63 Kakad S, Kshirsagar S. Nose to brain delivery of Efavirenz nanosuspension for effective neuro AIDS therapy: in-vitro, in-vivo and pharmacokinetic assessment. Heliyon 2021;7:e08368. [PMID: 34901485 DOI: 10.1016/j.heliyon.2021.e08368] [Reference Citation Analysis]