BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Limongi T, Canta M, Racca L, Ancona A, Tritta S, Vighetto V, Cauda V. Improving dispersal of therapeutic nanoparticles in the human body. Nanomedicine (Lond) 2019;14:797-801. [PMID: 30895871 DOI: 10.2217/nnm-2019-0070] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Limongi T. Special Issue "Metal and Metal Oxide Nanoparticles: Design, Characterization, and Biomedical Applications". Materials (Basel) 2021;14:7287. [PMID: 34885442 DOI: 10.3390/ma14237287] [Reference Citation Analysis]
2 Racca L, Cauda V. Remotely Activated Nanoparticles for Anticancer Therapy. Nanomicro Lett 2020;13:11. [PMID: 34138198 DOI: 10.1007/s40820-020-00537-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
3 Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers (Basel) 2019;11:E1979. [PMID: 31835327 DOI: 10.3390/cancers11121979] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
4 Racca L, Limongi T, Vighetto V, Dumontel B, Ancona A, Canta M, Canavese G, Garino N, Cauda V. Zinc Oxide Nanocrystals and High-Energy Shock Waves: A New Synergy for the Treatment of Cancer Cells. Front Bioeng Biotechnol 2020;8:577. [PMID: 32582682 DOI: 10.3389/fbioe.2020.00577] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
5 Lin W, Cai XD. Current Strategies for Cancer Cell-Derived Extracellular Vesicles for Cancer Therapy. Front Oncol 2021;11:758884. [PMID: 34804956 DOI: 10.3389/fonc.2021.758884] [Reference Citation Analysis]
6 Roma-Rodrigues C, Rivas-García L, Baptista PV, Fernandes AR. Gene Therapy in Cancer Treatment: Why Go Nano? Pharmaceutics 2020;12:E233. [PMID: 32151052 DOI: 10.3390/pharmaceutics12030233] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
7 Massella D, Argenziano M, Ferri A, Guan J, Giraud S, Cavalli R, Barresi AA, Salaün F. Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics 2019;11:E403. [PMID: 31405229 DOI: 10.3390/pharmaceutics11080403] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
8 Vighetto V, Racca L, Canta M, Matos JC, Dumontel B, Gonçalves MC, Cauda V. Smart Shockwave Responsive Titania-Based Nanoparticles for Cancer Treatment. Pharmaceutics 2021;13:1423. [PMID: 34575499 DOI: 10.3390/pharmaceutics13091423] [Reference Citation Analysis]
9 Limongi T, Susa F, Cauda V. Nanoparticles for hematologic diseases detection and treatment. Hematol Med Oncol 2019;4:1000183. [PMID: 33860108 DOI: 10.15761/hmo.1000183] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Sousa Ribeiro IR, Galdino FE, Silveira CP, Cardoso MB. Precision medicine based on nanoparticles: the paradigm between targeting and colloidal stability. Nanomedicine (Lond) 2021;16:1451-6. [PMID: 34080440 DOI: 10.2217/nnm-2021-0112] [Reference Citation Analysis]
11 Matos JC, Laurenti M, Vighetto V, Pereira LCJ, Waerenborgh JC, Gonçalves MC, Cauda V. Biomimetic Amorphous Titania Nanoparticles as Ultrasound Responding Agents to Improve Cavitation and ROS Production for Sonodynamic Therapy. Applied Sciences 2020;10:8479. [DOI: 10.3390/app10238479] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
12 Dumontel B, Susa F, Limongi T, Canta M, Racca L, Chiodoni A, Garino N, Chiabotto G, Centomo ML, Pignochino Y, Cauda V. ZnO nanocrystals shuttled by extracellular vesicles as effective Trojan nano-horses against cancer cells. Nanomedicine (Lond) 2019;14:2815-33. [PMID: 31747855 DOI: 10.2217/nnm-2019-0231] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
13 Scheffer FR, Silveira CP, Morais J, Bettini J, Cardoso MB. Tailoring Pseudo-Zwitterionic Bifunctionalized Silica Nanoparticles: From Colloidal Stability to Biological Interactions. Langmuir 2020;36:10756-63. [DOI: 10.1021/acs.langmuir.0c01545] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]