BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang Y, Pang Z, Chen X, Bie F, Wang Y, Wang G, Liu Q, Du J. Survival nomogram for patients with initially diagnosed metastatic non-small-cell lung cancer: a SEER-based study. Future Oncol 2019;15:3395-409. [PMID: 31512954 DOI: 10.2217/fon-2019-0007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Peng S, Xiao Y, Li X, Wu Z. A nomogram for predicting overall survival rate in patients with brain metastatic non-small cell lung cancer. Medicine 2022;101:e30824. [DOI: 10.1097/md.0000000000030824] [Reference Citation Analysis]
2 Chen H, Huang C, Ge H, Chen Q, Chen J, Li Y, Chen H, Luo S, Zhao L, Xu X. A novel LASSO-derived prognostic model predicting survival for non-small cell lung cancer patients with M1a diseases. Cancer Med 2022. [PMID: 35128839 DOI: 10.1002/cam4.4560] [Reference Citation Analysis]
3 Hao B, Fan T, Xiong J, Zhang L, Lu Z, Liu B, Meng H, He R, Li N, Geng Q. The Prognostic Significance of the Histological Types in Patients With Nonsmall Cell Lung Cancer ≤2 cm. Front Surg 2021;8:721567. [PMID: 34760914 DOI: 10.3389/fsurg.2021.721567] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 You H, Teng M, Gao CX, Yang B, Hu S, Wang T, Dong Y, Chen S. Construction of a Nomogram for Predicting Survival in Elderly Patients With Lung Adenocarcinoma: A Retrospective Cohort Study. Front Med (Lausanne) 2021;8:680679. [PMID: 34336886 DOI: 10.3389/fmed.2021.680679] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Wang Y, Liu S, Wang Z, Fan Y, Huang J, Huang L, Li Z, Li X, Jin M, Yu Q, Zhou F. A Machine Learning-Based Investigation of Gender-Specific Prognosis of Lung Cancers. Medicina (Kaunas) 2021;57:99. [PMID: 33499377 DOI: 10.3390/medicina57020099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 Auliac JB, Guisier F, Bizieux A, Assouline P, Bernardini M, Lamy R, Justeau G, François G, Damotte D, Chouaïd C. Impact of Programmed Death Ligand 1 Expression in Advanced Non-Small-Cell Lung Cancer Patients, Treated by Chemotherapy (GFPC 06-2015 Study). Onco Targets Ther 2020;13:13299-305. [PMID: 33408480 DOI: 10.2147/OTT.S288825] [Reference Citation Analysis]
7 Chen S, Gao C, Du Q, Tang L, You H, Dong Y. A prognostic model for elderly patients with squamous non-small cell lung cancer: a population-based study. J Transl Med 2020;18:436. [PMID: 33198777 DOI: 10.1186/s12967-020-02606-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
8 Li W, Xiao Y, Xu X, Zhang Y. A Novel Nomogram and Risk Classification System Predicting the Cancer-Specific Mortality of Patients with Initially Diagnosed Metastatic Cutaneous Melanoma. Ann Surg Oncol 2021;28:3490-500. [PMID: 33191484 DOI: 10.1245/s10434-020-09341-5] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
9 Huang Z, Hu C, Chi C, Jiang Z, Tong Y, Zhao C. An Artificial Intelligence Model for Predicting 1-Year Survival of Bone Metastases in Non-Small-Cell Lung Cancer Patients Based on XGBoost Algorithm. Biomed Res Int 2020;2020:3462363. [PMID: 32685470 DOI: 10.1155/2020/3462363] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
10 Ng IK, Kumarakulasinghe NB, Syn NL, Soo RA. Development, internal validation and calibration of a risk score to predict survival in patients with EGFR-mutant non-small cell lung cancer. J Clin Pathol 2021;74:116-22. [PMID: 32576630 DOI: 10.1136/jclinpath-2020-206754] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wu Z, Ouyang C, Peng L. A Novel Nomogram Based on Immune Scores for Predicting Survival in Patients with Early-Stage Non-Small Cell Lung Cancer (NSCLC). Med Sci Monit 2020;26:e923231. [PMID: 32479428 DOI: 10.12659/MSM.923231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]