BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bysani M, Perfilyev A, de Mello VD, Rönn T, Nilsson E, Pihlajamäki J, Ling C. Epigenetic alterations in blood mirror age-associated DNA methylation and gene expression changes in human liver. Epigenomics 2017;9:105-22. [PMID: 27911095 DOI: 10.2217/epi-2016-0087] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Gilbert KM, Blossom SJ, Reisfeld B, Erickson SW, Vyas K, Maher M, Broadfoot B, West K, Bai S, Cooney CA, Bhattacharyya S. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells. Environ Epigenet 2017;3:dvx013. [PMID: 29129997 DOI: 10.1093/eep/dvx013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
2 Guevara EE, Lawler RR, Staes N, White CM, Sherwood CC, Ely JJ, Hopkins WD, Bradley BJ. Age-associated epigenetic change in chimpanzees and humans. Philos Trans R Soc Lond B Biol Sci 2020;375:20190616. [PMID: 32951551 DOI: 10.1098/rstb.2019.0616] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
3 Oblak L, van der Zaag J, Higgins-Chen AT, Levine ME, Boks MP. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res Rev 2021;69:101348. [PMID: 33930583 DOI: 10.1016/j.arr.2021.101348] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
4 Liu Y, Wang M, Marcora EM, Zhang B, Goate AM. Promoter DNA hypermethylation - Implications for Alzheimer's disease. Neurosci Lett 2019;711:134403. [PMID: 31351091 DOI: 10.1016/j.neulet.2019.134403] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
5 Cheng Z, Zheng L, Almeida FA. Epigenetic reprogramming in metabolic disorders: nutritional factors and beyond. J Nutr Biochem 2018;54:1-10. [PMID: 29154162 DOI: 10.1016/j.jnutbio.2017.10.004] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 9.4] [Reference Citation Analysis]
6 Hack LM, Fries GR, Eyre HA, Bousman CA, Singh AB, Quevedo J, John VP, Baune BT, Dunlop BW. Moving pharmacoepigenetics tools for depression toward clinical use. J Affect Disord 2019;249:336-46. [PMID: 30802699 DOI: 10.1016/j.jad.2019.02.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
7 Chen J, Zou Q, Lv D, Raza MA, Wang X, Chen Y, Xi X, Li P, Wen A, Zhu L, Tang G, Li M, Li X, Jiang Y. Comprehensive transcriptional profiling of aging porcine liver. PeerJ 2019;7:e6949. [PMID: 31149403 DOI: 10.7717/peerj.6949] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
8 Treviño LS, Dong J, Kaushal A, Katz TA, Jangid RK, Robertson MJ, Grimm SL, Ambati CSR, Putluri V, Cox AR, Kim KH, May TD, Gallo MR, Moore DD, Hartig SM, Foulds CE, Putluri N, Coarfa C, Walker CL. Epigenome environment interactions accelerate epigenomic aging and unlock metabolically restricted epigenetic reprogramming in adulthood. Nat Commun 2020;11:2316. [PMID: 32385268 DOI: 10.1038/s41467-020-15847-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
9 Yang HJ, Koh E, Sung MK, Kang H. Changes Induced by Mind-Body Intervention Including Epigenetic Marks and Its Effects on Diabetes. Int J Mol Sci 2021;22:1317. [PMID: 33525677 DOI: 10.3390/ijms22031317] [Reference Citation Analysis]
10 Gillberg L, Rönn T, Jørgensen SW, Perfilyev A, Hjort L, Nilsson E, Brøns C, Vaag A, Ling C. Fasting unmasks differential fat and muscle transcriptional regulation of metabolic gene sets in low versus normal birth weight men. EBioMedicine 2019;47:341-51. [PMID: 31439477 DOI: 10.1016/j.ebiom.2019.08.017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
11 Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mechanisms of Ageing and Development 2018;174:3-17. [DOI: 10.1016/j.mad.2017.12.002] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 17.8] [Reference Citation Analysis]
12 Habibe JJ, Clemente-Olivo MP, de Vries CJ. How (Epi)Genetic Regulation of the LIM-Domain Protein FHL2 Impacts Multifactorial Disease. Cells 2021;10:2611. [PMID: 34685595 DOI: 10.3390/cells10102611] [Reference Citation Analysis]
13 Liu Y, Shen Y, Guo T, Parnell LD, Westerman KE, Smith CE, Ordovas JM, Lai CQ. Statin Use Associates With Risk of Type 2 Diabetes via Epigenetic Patterns at ABCG1. Front Genet 2020;11:622. [PMID: 32612641 DOI: 10.3389/fgene.2020.00622] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Najar RA, Wani NA, Bhat JA, Dar NJ, Rahat B, Gupta AP, Kaur J, Kaur J, Hamid A. Modulation of dietary folate with age confers selective hepatocellular epigenetic imprints through DNA methylation. The Journal of Nutritional Biochemistry 2018;53:121-32. [DOI: 10.1016/j.jnutbio.2017.10.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
15 Maude H, Sanchez-Cabanillas C, Cebola I. Epigenetics of Hepatic Insulin Resistance. Front Endocrinol (Lausanne) 2021;12:681356. [PMID: 34046015 DOI: 10.3389/fendo.2021.681356] [Reference Citation Analysis]
16 Clemente-Olivo MP, Habibe JJ, Vos M, Ottenhoff R, Jongejan A, Herrema H, Zelcer N, Kooijman S, Rensen PCN, van Raalte DH, Nieuwdorp M, Eringa EC, de Vries CJ. Four-and-a-half LIM domain protein 2 (FHL2) deficiency protects mice from diet-induced obesity and high FHL2 expression marks human obesity. Metabolism 2021;121:154815. [PMID: 34119536 DOI: 10.1016/j.metabol.2021.154815] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Fraszczyk E, Luijten M, Spijkerman AMW, Snieder H, Wackers PFK, Bloks VW, Nicoletti CF, Nonino CB, Crujeiras AB, Buurman WA, Greve JW, Rensen SS, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV. The effects of bariatric surgery on clinical profile, DNA methylation, and ageing in severely obese patients. Clin Epigenetics 2020;12:14. [PMID: 31959221 DOI: 10.1186/s13148-019-0790-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
18 Ling C, Rönn T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab 2019;29:1028-44. [PMID: 30982733 DOI: 10.1016/j.cmet.2019.03.009] [Cited by in Crossref: 158] [Cited by in F6Publishing: 155] [Article Influence: 52.7] [Reference Citation Analysis]
19 Perera BPU, Svoboda L, Dolinoy DC. Genomic Tools for Environmental Epigenetics and Implications for Public Health. Curr Opin Toxicol 2019;18:27-33. [PMID: 31763499 DOI: 10.1016/j.cotox.2019.02.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
20 Bacalini MG, Franceschi C, Gentilini D, Ravaioli F, Zhou X, Remondini D, Pirazzini C, Giuliani C, Marasco E, Gensous N, Di Blasio AM, Ellis E, Gramignoli R, Castellani G, Capri M, Strom S, Nardini C, Cescon M, Grazi GL, Garagnani P. Molecular Aging of Human Liver: An Epigenetic/Transcriptomic Signature. J Gerontol A Biol Sci Med Sci 2019;74:1-8. [PMID: 29554203 DOI: 10.1093/gerona/gly048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
21 Nilsson E, Ling C. DNA methylation links genetics, fetal environment, and an unhealthy lifestyle to the development of type 2 diabetes. Clin Epigenetics 2017;9:105. [PMID: 29026446 DOI: 10.1186/s13148-017-0399-2] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
22 Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther 2019;195:172-85. [PMID: 30419258 DOI: 10.1016/j.pharmthera.2018.11.001] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 16.8] [Reference Citation Analysis]
23 Davegårdh C, García-Calzón S, Bacos K, Ling C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol Metab 2018;14:12-25. [PMID: 29496428 DOI: 10.1016/j.molmet.2018.01.022] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 20.5] [Reference Citation Analysis]
24 Wei Z, Ding S, Duan M, Liu S, Huang L, Zhou F. FeSTwo, a two-step feature selection algorithm based on feature engineering and sampling for the chronological age regression problem. Computers in Biology and Medicine 2020;125:104008. [DOI: 10.1016/j.compbiomed.2020.104008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Ling C. Epigenetic regulation of insulin action and secretion – role in the pathogenesis of type 2 diabetes. J Intern Med 2020;288:158-67. [DOI: 10.1111/joim.13049] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
26 Anzai Á, Marcondes RR, Gonçalves TH, Carvalho KC, Simões MJ, Garcia N, Soares JM Jr, Padmanabhan V, Baracat EC, da Silva IDCG, Maciel GAR. Impaired branched-chain amino acid metabolism may underlie the nonalcoholic fatty liver disease-like pathology of neonatal testosterone-treated female rats. Sci Rep 2017;7:13167. [PMID: 29030588 DOI: 10.1038/s41598-017-13451-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
27 Chen X, Lin Q, Wen J, Lin W, Liang J, Huang H, Li L, Huang J, Chen F, Liu D, Chen G. Whole genome bisulfite sequencing of human spermatozoa reveals differentially methylated patterns from type 2 diabetic patients. J Diabetes Investig 2020;11:856-64. [PMID: 31869513 DOI: 10.1111/jdi.13201] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Ramo-Fernández L, Karabatsiakis A, Boeck C, Bach AM, Gumpp AM, Mavioglu RN, Ammerpohl O, Kolassa IT. Characterization of the effects of age and childhood maltreatment on ELOVL2 DNA methylation. Dev Psychopathol 2021;:1-11. [PMID: 33461631 DOI: 10.1017/S0954579420001972] [Reference Citation Analysis]
29 Steiger H, Booij L, Kahan `, McGregor K, Thaler L, Fletcher E, Labbe A, Joober R, Israël M, Szyf M, Agellon LB, Gauvin L, St-Hilaire A, Rossi E. A longitudinal, epigenome-wide study of DNA methylation in anorexia nervosa: results in actively ill, partially weight-restored, long-term remitted and non-eating-disordered women. J Psychiatry Neurosci 2019;44:205-13. [PMID: 30693739 DOI: 10.1503/jpn.170242] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
30 Ramos-lopez O, Riezu-boj JI, Milagro FI, Alfredo Martinez J; On Behalf of the MENA Project. Association of Methylation Signatures at Hepatocellular Carcinoma Pathway Genes with Adiposity and Insulin Resistance Phenotypes. Nutrition and Cancer 2019;71:840-51. [DOI: 10.1080/01635581.2018.1531136] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]