BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol. 1989;152:167-173. [PMID: 2783272 DOI: 10.2214/ajr.152.1.167] [Cited by in Crossref: 744] [Cited by in F6Publishing: 687] [Article Influence: 22.5] [Reference Citation Analysis]
Number Citing Articles
1 Roberts TPL. Physiologic measurements by contrast-enhanced MR imaging: Expectations and limitations. J Magn Reson Imaging 1997;7:82-90. [DOI: 10.1002/jmri.1880070112] [Cited by in Crossref: 105] [Cited by in F6Publishing: 93] [Article Influence: 4.2] [Reference Citation Analysis]
2 Connolly J, Pierre TGS, Rutnakornpituk M, Riffle JS. Cobalt nanoparticles formed in polysiloxane copolymer micelles: effect of production methods on magnetic properties. J Phys D: Appl Phys 2004;37:2475-82. [DOI: 10.1088/0022-3727/37/18/002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 1.4] [Reference Citation Analysis]
3 Beigi FH, Fatahian S, Shahbazi-Gahrouei S, Shahbazi-Gahrouei D, Farzadniya A. Assessment of Ploy Dopamine Coated Fe3O4 Nanoparticles for Melanoma (B16-F10 and A-375) Cells Detection. Anticancer Agents Med Chem 2020;20:1918-26. [PMID: 32400336 DOI: 10.2174/1871520620666200513084616] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012;41:2323-2343. [PMID: 22170510 DOI: 10.1039/c1cs15188f] [Cited by in Crossref: 870] [Cited by in F6Publishing: 184] [Article Influence: 79.1] [Reference Citation Analysis]
5 Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol Imaging 2015;10:329-55. [PMID: 25882768 DOI: 10.1002/cmmi.1638] [Cited by in Crossref: 83] [Cited by in F6Publishing: 77] [Article Influence: 11.9] [Reference Citation Analysis]
6 Choudhury RP, Fisher EA. Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. Arterioscler Thromb Vasc Biol 2009;29:983-91. [PMID: 19213945 DOI: 10.1161/ATVBAHA.108.165498] [Cited by in Crossref: 75] [Cited by in F6Publishing: 43] [Article Influence: 5.8] [Reference Citation Analysis]
7 Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhavalikar R, Zhou XY, Yu EY, Goodwill PW, Zheng B, Rinaldi C, Conolly SM. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. ACS Nano 2018;12:3699-713. [PMID: 29570277 DOI: 10.1021/acsnano.8b00893] [Cited by in Crossref: 139] [Cited by in F6Publishing: 110] [Article Influence: 34.8] [Reference Citation Analysis]
8 Polyak B, Friedman G. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Deliv 2009;6:53-70. [PMID: 19236208 DOI: 10.1517/17425240802662795] [Cited by in Crossref: 186] [Cited by in F6Publishing: 149] [Article Influence: 14.3] [Reference Citation Analysis]
9 Yu M, Jeong Y, Park J, Park S, Kim J, Min J, Kim K, Jon S. Drug‐Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo. Angew Chem Int Ed 2008;47:5362-5. [DOI: 10.1002/anie.200800857] [Cited by in Crossref: 468] [Cited by in F6Publishing: 416] [Article Influence: 33.4] [Reference Citation Analysis]
10 Jun Y, Lee J, Cheon J. Chemical Design of Nanoparticle Probes for High‐Performance Magnetic Resonance Imaging. Angew Chem Int Ed 2008;47:5122-35. [DOI: 10.1002/anie.200701674] [Cited by in Crossref: 704] [Cited by in F6Publishing: 608] [Article Influence: 50.3] [Reference Citation Analysis]
11 Herborn CU, Lauenstein TC, Vogt FM, Lauffer RB, Debatin JF, Ruehm SG. Interstitial MR Lymphography with MS-325: Characterization of Normal and Tumor-Invaded Lymph Nodes in a Rabbit Model. American Journal of Roentgenology 2002;179:1567-72. [DOI: 10.2214/ajr.179.6.1791567] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 2.2] [Reference Citation Analysis]
12 Wang YX. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg 2011;1:35-40. [PMID: 23256052 DOI: 10.3978/j.issn.2223-4292.2011.08.03] [Cited by in F6Publishing: 226] [Reference Citation Analysis]
13 Kim HS, Oh SY, Joo HJ, Son KR, Song IC, Moon WK. The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR Biomed 2010;23:514-22. [PMID: 20175151 DOI: 10.1002/nbm.1487] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 4.0] [Reference Citation Analysis]
14 Han J, Liang G, Xing D. A pH-Sensitive Zwitterionic Iron Complex Probe with High Biocompatibility for Tumor-Specific Magnetic Resonance Imaging. Chemistry 2019;25:8353-62. [PMID: 30939221 DOI: 10.1002/chem.201901117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
15 Gupta AK, Curtis AS. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004;25:3029-40. [PMID: 14967536 DOI: 10.1016/j.biomaterials.2003.09.095] [Cited by in Crossref: 228] [Cited by in F6Publishing: 182] [Article Influence: 12.7] [Reference Citation Analysis]
16 Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L. Nanoparticle imaging of integrins on tumor cells. Neoplasia 2006;8:214-22. [PMID: 16611415 DOI: 10.1593/neo.05769] [Cited by in Crossref: 185] [Cited by in F6Publishing: 163] [Article Influence: 11.6] [Reference Citation Analysis]
17 Taylor AM, Panting JR, Keegan J, Gatehouse PD, Amin D, Jhooti P, Yang GZ, Mcgill S, Burman ED, Francis JM, Firmin DN, Pennell DJ. Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J Magn Reson Imaging 1999;9:220-7. [DOI: 10.1002/(sici)1522-2586(199902)9:2<220::aid-jmri11>3.0.co;2-a] [Cited by in Crossref: 97] [Cited by in F6Publishing: 9] [Article Influence: 4.2] [Reference Citation Analysis]
18 Mirshafiee V, Jiang W, Sun B, Wang X, Xia T. Facilitating Translational Nanomedicine via Predictive Safety Assessment. Mol Ther 2017;25:1522-30. [PMID: 28412168 DOI: 10.1016/j.ymthe.2017.03.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 4.2] [Reference Citation Analysis]
19 German SV, Inozemtseva OA, Navolokin NA, Pudovkina EE, Zuev VV, Volkova EK, Bucharskaya AB, Pleskova SN, Maslyakova GN, Gorin DA. Synthesis of magnetite hydrosols and assessment of their impact on living systems at the cellular and tissue levels using MRI and morphological investigation. Nanotechnol Russia 2013;8:573-80. [DOI: 10.1134/s1995078013040034] [Cited by in Crossref: 10] [Article Influence: 1.1] [Reference Citation Analysis]
20 Bernd H, De Kerviler E, Gaillard S, Bonnemain B. Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol 2009;44:336-42. [PMID: 19661843 DOI: 10.1097/RLI.0b013e3181a0068b] [Cited by in Crossref: 80] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
21 Thapa B, Diaz-Diestra D, Santiago-Medina C, Kumar N, Tu K, Beltran-Huarac J, Jadwisienczak WM, Weiner BR, Morell G. T1- and T2-weighted Magnetic Resonance Dual Contrast by Single Core Truncated Cubic Iron Oxide Nanoparticles with Abrupt Cellular Internalization and Immune Evasion. ACS Appl Bio Mater 2018;1:79-89. [PMID: 30094416 DOI: 10.1021/acsabm.8b00016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
22 Weissleder R, Cheng H, Bogdanova A, Bogdanov A. Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 1997;7:258-63. [DOI: 10.1002/jmri.1880070140] [Cited by in Crossref: 263] [Cited by in F6Publishing: 241] [Article Influence: 10.5] [Reference Citation Analysis]
23 Antonelli A, Sfara C, Weber O, Pison U, Manuali E, Salamida S, Magnani M. Characterization of ferucarbotran-loaded RBCs as long circulating magnetic contrast agents. Nanomedicine (Lond) 2016;11:2781-95. [PMID: 27739933 DOI: 10.2217/nnm-2016-0216] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
24 Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, Aikawa M. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation. 2010;122:1707-1715. [PMID: 20937980 DOI: 10.1016/circulationaha.109.891804] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Du S, Zhang L, Han K, Chen S, Hu Z, Chen W, Hu K, Yin L, Wu B, Guan Y. Combined Phycocyanin and Hematoporphyrin Monomethyl Ether for Breast Cancer Treatment via Photosensitizers Modified Fe 3 O 4 Nanoparticles Inhibiting the Proliferation and Migration of MCF-7 Cells. Biomacromolecules 2018;19:31-41. [DOI: 10.1021/acs.biomac.7b01197] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
26 Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 2017;12:73-87. [PMID: 27876448 DOI: 10.2217/nnm-2016-0316] [Cited by in Crossref: 113] [Cited by in F6Publishing: 77] [Article Influence: 18.8] [Reference Citation Analysis]
27 Casals E, Gusta MF, Piella J, Casals G, Jiménez W, Puntes V. Intrinsic and Extrinsic Properties Affecting Innate Immune Responses to Nanoparticles: The Case of Cerium Oxide. Front Immunol 2017;8:970. [PMID: 28855907 DOI: 10.3389/fimmu.2017.00970] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
28 Terrier F, Toumiaire J, Bélenger J, Slosman D, Rubbia L, Grossholz M, Mentha G, Hiltbrand E, Mermillod B. Magnetic resonance imaging with superparamagnetic iron oxide particles to evaluate hepatic macrophage—Monocytic phagocytosis after arterial devascularization in Minipigs. Academic Radiology 1995;2:565-75. [DOI: 10.1016/s1076-6332(05)80116-3] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
29 Bárcena C, Sra AK, Chaubey GS, Khemtong C, Liu JP, Gao J. Zinc ferrite nanoparticles as MRI contrast agents. Chem Commun (Camb) 2008;:2224-6. [PMID: 18463747 DOI: 10.1039/b801041b] [Cited by in Crossref: 115] [Cited by in F6Publishing: 86] [Article Influence: 8.2] [Reference Citation Analysis]
30 Li X, Li W, Wang W. Using Targeted Magnetic Arsenic Trioxide Nanoparticles for Osteosarcoma Treatment. Cancer Biotherapy and Radiopharmaceuticals 2007;22:772-8. [DOI: 10.1089/cbr.2007.352] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
31 Volatron J, Carn F, Kolosnjaj-tabi J, Javed Y, Vuong QL, Gossuin Y, Ménager C, Luciani N, Charron G, Hémadi M, Alloyeau D, Gazeau F. Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles. Small 2017;13:1602030. [DOI: 10.1002/smll.201602030] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
32 Magin RL, Bacic G, Niesman MR, Alameda JC Jr, Wright SM, Swartz HM. Dextran magnetite as a liver contrast agent. Magn Reson Med 1991;20:1-16. [PMID: 1943651 DOI: 10.1002/mrm.1910200102] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 0.8] [Reference Citation Analysis]
33 Du Y, Lai PT, Leung CH, Pong PW. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). Int J Mol Sci 2013;14:18682-710. [PMID: 24030719 DOI: 10.3390/ijms140918682] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
34 Briley-Saebo KC, Mani V, Hyafil F, Cornily JC, Fayad ZA. Fractionated Feridex and positive contrast: in vivo MR imaging of atherosclerosis. Magn Reson Med 2008;59:721-30. [PMID: 18383304 DOI: 10.1002/mrm.21541] [Cited by in Crossref: 50] [Cited by in F6Publishing: 40] [Article Influence: 3.6] [Reference Citation Analysis]
35 Cai W, Wan J. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. Journal of Colloid and Interface Science 2007;305:366-70. [DOI: 10.1016/j.jcis.2006.10.023] [Cited by in Crossref: 366] [Cited by in F6Publishing: 262] [Article Influence: 24.4] [Reference Citation Analysis]
36 Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 2004;14:1851-8. [PMID: 15249981 DOI: 10.1007/s00330-004-2405-2] [Cited by in Crossref: 182] [Cited by in F6Publishing: 179] [Article Influence: 10.1] [Reference Citation Analysis]
37 Schwartz LH, Seltzer SE, Tempany CMC, Silverman SG, Piwnica-worms DR, Adams DF, Herman L, Herman LA, Hooshmand R. Superparamagnetic Iron Oxide Hepatic MR Imaging: Efficacy and Safety Using Conventional and Fast Spin-Echo Pulse Sequences. J Magn Reson Imaging 1995;5:566-70. [DOI: 10.1002/jmri.1880050516] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 1.3] [Reference Citation Analysis]
38 Khemtong C, Togao O, Ren J, Kessinger CW, Takahashi M, Sherry AD, Gao J. Off-resonance saturation MRI of superparamagnetic nanoprobes: theoretical models and experimental validations. J Magn Reson 2011;209:53-60. [PMID: 21277813 DOI: 10.1016/j.jmr.2010.12.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
39 Roussel A, Petit E, Mallet L, Zins M. Splénose : intérêt de l’IRM avec injection de produit de contraste superparamagnétique. Journal de Radiologie 2008;89:1944-6. [DOI: 10.1016/s0221-0363(08)74792-9] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
40 Chacko AM, Hood ED, Zern BJ, Muzykantov VR. Targeted Nanocarriers for Imaging and Therapy of Vascular Inflammation. Curr Opin Colloid Interface Sci 2011;16:215-27. [PMID: 21709761 DOI: 10.1016/j.cocis.2011.01.008] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 4.2] [Reference Citation Analysis]
41 Lin G, Mu Q, Revia R, Stephen Z, Jeon M, Zhang M. A highly selective iron oxide-based imaging nanoparticle for long-term monitoring of drug-induced tumor cell apoptosis. Biomater Sci 2021;9:471-81. [PMID: 32662460 DOI: 10.1039/d0bm00518e] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Yadav P, Zhang C, Whittaker AK, Kailasam K, Shanavas A. Magnetic and Photocatalytic Curcumin Bound Carbon Nitride Nanohybrids for Enhanced Glioma Cell Death. ACS Biomater Sci Eng 2019;5:6590-601. [PMID: 33423478 DOI: 10.1021/acsbiomaterials.9b01224] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
43 Jozwiak S, Habich A, Kotulska K, Sarnowska A, Kropiwnicki T, Janowski M, Jurkiewicz E, Lukomska B, Kmiec T, Walecki J, Roszkowski M, Litwin M, Oldak T, Boruczkowski D, Domanska-Janik K. Intracerebroventricular Transplantation of Cord Blood-Derived Neural Progenitors in a Child With Severe Global Brain Ischemic Injury. Cell Med 2010;1:71-80. [PMID: 26966631 DOI: 10.3727/215517910X536618] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
44 Tong S, Zhu H, Bao G. Magnetic Iron Oxide Nanoparticles for Disease Detection and Therapy. Mater Today (Kidlington) 2019;31:86-99. [PMID: 32831620 DOI: 10.1016/j.mattod.2019.06.003] [Cited by in Crossref: 46] [Cited by in F6Publishing: 23] [Article Influence: 15.3] [Reference Citation Analysis]
45 Shao H, Qi J, Lin T, Zhou Y. Preparation and Characterization of Fe3O4@SiO2@NMDP core-shell structure composite magnetic nanoparticles. Ceramics International 2018;44:2255-60. [DOI: 10.1016/j.ceramint.2017.10.184] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
46 Vedernikova IA. Magnetic nanoparticles: Advantages of using, methods for preparation, characterization, application in pharmacy. Ref J Chem 2015;5:256-80. [DOI: 10.1134/s2079978015030036] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
47 Ju S, Teng G, Zhang Y, Ma M, Chen F, Ni Y. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magnetic Resonance Imaging 2006;24:611-7. [DOI: 10.1016/j.mri.2005.12.017] [Cited by in Crossref: 73] [Cited by in F6Publishing: 71] [Article Influence: 4.6] [Reference Citation Analysis]
48 Wang S, Xu J, Li W, Sun S, Gao S, Hou Y. Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chem Rev 2022. [PMID: 35014799 DOI: 10.1021/acs.chemrev.1c00370] [Reference Citation Analysis]
49 Pouliquen D, Lucet I, Chouly C, Perdrisot R, Le Jeune J, Jallet P. Liver-directed superparamagnetic iron oxide: Quantitation of T2 relaxation effects. Magnetic Resonance Imaging 1993;11:219-28. [DOI: 10.1016/0730-725x(93)90026-a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
50 Rodrigues GR, López-Abarrategui C, de la Serna Gómez I, Dias SC, Otero-González AJ, Franco OL. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. Int J Pharm 2019;555:356-67. [PMID: 30453018 DOI: 10.1016/j.ijpharm.2018.11.043] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
51 Liu Y, Wang J. Comparative and quantitative investigation of cell labeling of a 12-nm DMSA-coated Fe 3 O 4 magnetic nanoparticle with multiple mammalian cell lines. J Mater Res 2011;26:822-31. [DOI: 10.1557/jmr.2010.60] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
52 Alger JR, Harreld JH, Chen S, Mintorovitch J, Lu DS. Time-to-echo optimization for spin echo magnetic resonance imaging of liver metastasis using superparamagnetic iron oxide particles. J Magn Reson Imaging 2001;14:586-94. [DOI: 10.1002/jmri.1223] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
53 Jun Y, Jang J, Cheon J. Magnetic Nanoparticle Assisted Molecular MR Imaging. In: Chan WCW, editor. Bio-Applications of Nanoparticles. New York: Springer; 2007. pp. 85-106. [DOI: 10.1007/978-0-387-76713-0_7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
54 Beckmann N, Falk R, Zurbrügg S, Dawson J, Engelhardt P. Macrophage infiltration into the rat knee detected by MRI in a model of antigen-induced arthritis: Model of Antigen-Induced Arthritis. Magn Reson Med 2003;49:1047-55. [DOI: 10.1002/mrm.10480] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 3.1] [Reference Citation Analysis]
55 Chandrasekharan P, Tay ZW, Zhou XY, Yu E, Orendorff R, Hensley D, Huynh Q, Fung KLB, VanHook CC, Goodwill P, Zheng B, Conolly S. A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation. Br J Radiol 2018;91:20180326. [PMID: 29888968 DOI: 10.1259/bjr.20180326] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
56 Chen W, Cao Y, Liu M, Zhao Q, Huang J, Zhang H, Deng Z, Dai J, Williams DF, Zhang Z. Rotavirus capsid surface protein VP4-coated Fe3O4 nanoparticles as a theranostic platform for cellular imaging and drug delivery. Biomaterials 2012;33:7895-902. [DOI: 10.1016/j.biomaterials.2012.07.016] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
57 Moore TL, Wang F, Chen H, Grimes SW, Anker JN, Alexis F. Polymer-Coated Radioluminescent Nanoparticles for Quantitative Imaging of Drug Delivery. Adv Funct Mater 2014;24:5815-23. [DOI: 10.1002/adfm.201400949] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
58 Sosnovik DE, Caravan P. Molecular MRI of the Cardiovascular System in the Post-NSF Era. Curr Cardiovasc Imaging Rep 2013;6:61-8. [PMID: 23504765 DOI: 10.1007/s12410-012-9182-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
59 Kim SH, Choi D, Kim SH, Lim JH, Lee WJ, Kim MJ, Lim HK, Lee SJ. Ferucarbotran-enhanced MRI versus triple-phase MDCT for the preoperative detection of hepatocellular carcinoma. AJR Am J Roentgenol. 2005;184:1069-1076. [PMID: 15788575 DOI: 10.2214/ajr.184.4.01841069] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 2.7] [Reference Citation Analysis]
60 Gholami YH, Josephson L, Akam EA, Caravan P, Wilks MQ, Pan XZ, Maschmeyer R, Kolnick A, El Fakhri G, Normandin MD, Kuncic Z, Yuan H. A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Therapeutic Isotopes. Int J Nanomedicine 2020;15:31-47. [PMID: 32021163 DOI: 10.2147/IJN.S227931] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
61 Arteaga-cardona F, Gutiérrez-garcía E, Hidalgo-tobón S, López-vasquez C, Brito-barrera YA, Flores-tochihuitl J, Angulo-molina A, Reyes-leyva JR, González-rodríguez R, Coffer JL, Pal U, Diaz-conti MP, Platas-neri D, Dies-suarez P, Fonseca RS, Arias-carrión O, Méndez-rojas MA. Cell viability and MRI performance of highly efficient polyol-coated magnetic nanoparticles. J Nanopart Res 2016;18. [DOI: 10.1007/s11051-016-3646-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
62 Shih YY, Hsu YH, Duong TQ, Lin SS, Chow KP, Chang C. Longitudinal study of tumor-associated macrophages during tumor expansion using MRI. NMR Biomed 2011;24:1353-60. [PMID: 22223366 DOI: 10.1002/nbm.1698] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
63 Qiao R, Yang C, Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 2009;19:6274. [DOI: 10.1039/b902394a] [Cited by in Crossref: 501] [Cited by in F6Publishing: 349] [Article Influence: 38.5] [Reference Citation Analysis]
64 Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 2008;5:316-27. [PMID: 18217714 DOI: 10.1021/mp7001285] [Cited by in Crossref: 479] [Cited by in F6Publishing: 433] [Article Influence: 34.2] [Reference Citation Analysis]
65 Chandrasekharan P, Tay ZW, Hensley D, Zhou XY, Fung BK, Colson C, Lu Y, Fellows BD, Huynh Q, Saayujya C, Yu E, Orendorff R, Zheng B, Goodwill P, Rinaldi C, Conolly S. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Theranostics 2020;10:2965-81. [PMID: 32194849 DOI: 10.7150/thno.40858] [Cited by in F6Publishing: 20] [Reference Citation Analysis]
66 Unger EC. How Can Superparamagnetic Iron Oxides Be Used to Monitor Disease and Treatment? Radiology 2003;229:615-6. [DOI: 10.1148/radiol.2293031017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 1.3] [Reference Citation Analysis]
67 Nowak J, Wiekhorst F, Trahms L, Odenbach S. The influence of hydrodynamic diameter and core composition on the magnetoviscous effect of biocompatible ferrofluids. J Phys Condens Matter 2014;26:176004. [PMID: 24721897 DOI: 10.1088/0953-8984/26/17/176004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
68 Juang JH, Shen CR, Wang JJ, Kuo CH, Chien YW, Kuo HY, Chen FR, Chen MH, Yen TC, Tsai ZT. Magnetic resonance imaging of mouse islet grafts labeled with novel chitosan-coated superparamagnetic iron oxide nanoparticles. PLoS One 2013;8:e62626. [PMID: 23658638 DOI: 10.1371/journal.pone.0062626] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
69 Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol 2013;13:755-63. [PMID: 24013185 DOI: 10.1038/nri3531] [Cited by in Crossref: 280] [Cited by in F6Publishing: 264] [Article Influence: 31.1] [Reference Citation Analysis]
70 Lazić V, Mihajlovski K, Mraković A, Illés E, Stoiljković M, Ahrenkiel SP, Nedeljković JM. Antimicrobial activity of silver nanoparticles supported by magnetite. ChemistrySelect 2019;4:4018-24. [DOI: 10.1002/slct.201900628] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
71 Patil US, Adireddy S, Jaiswal A, Mandava S, Lee BR, Chrisey DB. In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles. Int J Mol Sci 2015;16:24417-50. [PMID: 26501258 DOI: 10.3390/ijms161024417] [Cited by in Crossref: 107] [Cited by in F6Publishing: 82] [Article Influence: 15.3] [Reference Citation Analysis]
72 Seabra AB, Haddad PS. Cytotoxicity and Genotoxicity of Iron Oxides Nanoparticles. In: Durán N, Guterres SS, Alves OL, editors. Nanotoxicology. New York: Springer; 2014. pp. 265-79. [DOI: 10.1007/978-1-4614-8993-1_12] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
73 Aday S, Zoldan J, Besnier M, Carreto L, Saif J, Fernandes R, Santos T, Bernardino L, Langer R, Emanueli C, Ferreira L. Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition. Nat Commun 2017;8:747. [PMID: 28963481 DOI: 10.1038/s41467-017-00746-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
74 Lu K, Goodwill P, Zheng B, Conolly S. Multi-Channel Acquisition for Isotropic Resolution in Magnetic Particle Imaging. IEEE Trans Med Imaging 2018;37:1989-98. [PMID: 29990139 DOI: 10.1109/TMI.2017.2787500] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
75 Mulder WJ, McMahon MT, Nicolay K. The evolution of MRI probes: from the initial development to state-of-the-art applications. NMR Biomed 2013;26:725-7. [PMID: 23784954 DOI: 10.1002/nbm.2976] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
76 Okuhata Y. Delivery of diagnostic agents for magnetic resonance imaging. Advanced Drug Delivery Reviews 1999;37:121-37. [DOI: 10.1016/s0169-409x(98)00103-3] [Cited by in Crossref: 108] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
77 Kumar R, Nagesha DK. Size-Dependent Study of Pulmonary Responses to Nano-sized Iron and Copper Oxide Nanoparticles. In: Armstrong D, Bharali DJ, editors. Oxidative Stress and Nanotechnology. Totowa: Humana Press; 2013. pp. 247-64. [DOI: 10.1007/978-1-62703-475-3_16] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
78 Gandon Y, Heautot J, Brunet F, Guyader D, Deugnier Y, Carsin M. Superparamagnetic iron oxide: clinical time-response study. European Journal of Radiology 1991;12:195-200. [DOI: 10.1016/0720-048x(91)90072-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
79 Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev 2021;177:113954. [PMID: 34478780 DOI: 10.1016/j.addr.2021.113954] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Acar HYC, Garaas RS, Syud F, Bonitatebus P, Kulkarni AM. Superparamagnetic nanoparticles stabilized by polymerized PEGylated coatings. Journal of Magnetism and Magnetic Materials 2005;293:1-7. [DOI: 10.1016/j.jmmm.2005.01.035] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
81 Owoseni O, Nyankson E, Zhang Y, Adams DJ, He J, Spinu L, McPherson GL, Bose A, Gupta RB, John VT. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions. J Colloid Interface Sci 2016;463:288-98. [PMID: 26555959 DOI: 10.1016/j.jcis.2015.10.064] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 4.9] [Reference Citation Analysis]
82 Blau R, Krivitsky A, Epshtein Y, Satchi-Fainaro R. Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resist Updat 2016;27:39-58. [PMID: 27449597 DOI: 10.1016/j.drup.2016.06.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
83 Friedrich RP, Janko C, Poettler M, Tripal P, Zaloga J, Cicha I, Dürr S, Nowak J, Odenbach S, Slabu I, Liebl M, Trahms L, Stapf M, Hilger I, Lyer S, Alexiou C. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods. Int J Nanomedicine 2015;10:4185-201. [PMID: 26170658 DOI: 10.2147/IJN.S82714] [Cited by in Crossref: 48] [Cited by in F6Publishing: 30] [Article Influence: 6.9] [Reference Citation Analysis]
84 Clemente-Casares X, Santamaria P. Nanomedicine in autoimmunity. Immunol Lett 2014;158:167-74. [PMID: 24406504 DOI: 10.1016/j.imlet.2013.12.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
85 Upponi JR, Jerajani K, Nagesha DK, Kulkarni P, Sridhar S, Ferris C, Torchilin VP. Polymeric micelles: Theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials 2018;170:26-36. [PMID: 29649747 DOI: 10.1016/j.biomaterials.2018.03.054] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 14.5] [Reference Citation Analysis]
86 Kaittanis C, Shaffer TM, Thorek DL, Grimm J. Dawn of advanced molecular medicine: nanotechnological advancements in cancer imaging and therapy. Crit Rev Oncog 2014;19:143-76. [PMID: 25271430 DOI: 10.1615/critrevoncog.2014011601] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
87 Kasten A, Grüttner C, Kühn JP, Bader R, Pasold J, Frerich B. Comparative in vitro study on magnetic iron oxide nanoparticles for MRI tracking of adipose tissue-derived progenitor cells. PLoS One 2014;9:e108055. [PMID: 25244560 DOI: 10.1371/journal.pone.0108055] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
88 Pablico-Lansigan MH, Situ SF, Samia AC. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 2013;5:4040-55. [PMID: 23538400 DOI: 10.1039/c3nr00544e] [Cited by in Crossref: 92] [Cited by in F6Publishing: 70] [Article Influence: 10.2] [Reference Citation Analysis]
89 Tadesse A, Ramadevi D, Hagos M, Battu G, Basavaiah K. Synthesis of nitrogen doped carbon quantum dots/magnetite nanocomposites for efficient removal of methyl blue dye pollutant from contaminated water. RSC Adv 2018;8:8528-36. [DOI: 10.1039/c8ra00158h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
90 Fellows BD, Ghobrial N, Mappus E, Hargett A, Bolding M, Dean D, Mefford OT. In vitro studies of heparin-coated magnetic nanoparticles for use in the treatment of neointimal hyperplasia. Nanomedicine: Nanotechnology, Biology and Medicine 2018;14:1191-200. [DOI: 10.1016/j.nano.2018.02.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
91 Hufschmid R, Teeman E, Mehdi BL, Krishnan KM, Browning ND. Observing the colloidal stability of iron oxide nanoparticles in situ. Nanoscale 2019;11:13098-107. [DOI: 10.1039/c9nr03709h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 4.7] [Reference Citation Analysis]
92 Croft LR, Goodwill PW, Conolly SM. Relaxation in x-space magnetic particle imaging. IEEE Trans Med Imaging 2012;31:2335-42. [PMID: 22968211 DOI: 10.1109/TMI.2012.2217979] [Cited by in Crossref: 56] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
93 Duguet E, Vasseur S, Mornet S, Devoisselle JM. Magnetic nanoparticles and their applications in medicine. Nanomedicine (Lond) 2006;1:157-68. [PMID: 17716105 DOI: 10.2217/17435889.1.2.157] [Cited by in Crossref: 262] [Cited by in F6Publishing: 216] [Article Influence: 17.5] [Reference Citation Analysis]
94 Lévy M, Lagarde F, Maraloiu V, Blanchin M, Gendron F, Wilhelm C, Gazeau F. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 2010;21:395103. [DOI: 10.1088/0957-4484/21/39/395103] [Cited by in Crossref: 149] [Cited by in F6Publishing: 131] [Article Influence: 12.4] [Reference Citation Analysis]
95 Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V. Iron oxide nanoparticles - In vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interface Sci 2017;249:192-212. [PMID: 28499604 DOI: 10.1016/j.cis.2017.05.003] [Cited by in Crossref: 41] [Cited by in F6Publishing: 25] [Article Influence: 8.2] [Reference Citation Analysis]
96 Theek B, Rizzo LY, Ehling J, Kiessling F, Lammers T. The Theranostic Path to Personalized Nanomedicine. Clin Transl Imaging 2014;2:66-76. [PMID: 24860796 DOI: 10.1007/s40336-014-0051-5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
97 Glover JC, Aswendt M, Boulland JL, Lojk J, Stamenković S, Andjus P, Fiori F, Hoehn M, Mitrecic D, Pavlin M, Cavalli S, Frati C, Quaini F; EU COST Action 16122 (BIONECA). In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease. Mol Imaging Biol 2020;22:1469-88. [PMID: 31802361 DOI: 10.1007/s11307-019-01440-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
98 Rosenberg JT, Sellgren KL, Sachi-kocher A, Calixto Bejarano F, Baird MA, Davidson MW, Ma T, Grant SC. Magnetic resonance contrast and biological effects of intracellular superparamagnetic iron oxides on human mesenchymal stem cells with long-term culture and hypoxic exposure. Cytotherapy 2013;15:307-22. [DOI: 10.1016/j.jcyt.2012.10.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
99 Fleige G, Nolte C, Synowitz M, Seeberger F, Kettenmann H, Zimmer C. Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 2001;3:489-99. [PMID: 11774031 DOI: 10.1038/sj.neo.7900176] [Cited by in Crossref: 92] [Cited by in F6Publishing: 83] [Article Influence: 4.6] [Reference Citation Analysis]
100 Sosnovik DE, Nahrendorf M, Weissleder R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 2008;103:122-30. [PMID: 18324368 DOI: 10.1007/s00395-008-0710-7] [Cited by in Crossref: 170] [Cited by in F6Publishing: 134] [Article Influence: 13.1] [Reference Citation Analysis]
101 Prilepskii AY, Fakhardo AF, Drozdov AS, Vinogradov VV, Dudanov IP, Shtil AA, Bel'tyukov PP, Shibeko AM, Koltsova EM, Nechipurenko DY, Vinogradov VV. Urokinase-Conjugated Magnetite Nanoparticles as a Promising Drug Delivery System for Targeted Thrombolysis: Synthesis and Preclinical Evaluation. ACS Appl Mater Interfaces 2018;10:36764-75. [PMID: 30299938 DOI: 10.1021/acsami.8b14790] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
102 Oude Engberink RD, Blezer EL, Hoff EI, van der Pol SM, van der Toorn A, Dijkhuizen RM, de Vries HE. MRI of monocyte infiltration in an animal model of neuroinflammation using SPIO-labeled monocytes or free USPIO. J Cereb Blood Flow Metab 2008;28:841-51. [PMID: 18000513 DOI: 10.1038/sj.jcbfm.9600580] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 3.3] [Reference Citation Analysis]
103 Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008;60:1252-65. [PMID: 18558452 DOI: 10.1016/j.addr.2008.03.018] [Cited by in Crossref: 1751] [Cited by in F6Publishing: 1363] [Article Influence: 125.1] [Reference Citation Analysis]
104 Zacharovová K, Berková Z, Jirák D, Herynek V, Vancová M, Dovolilová E, Saudek F. Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets. Contrast Media Mol Imaging 2012;7:485-93. [PMID: 22991314 DOI: 10.1002/cmmi.1477] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
105 Maity D, Ding J, Xue J. ONE-POT SYNTHESIS OF HYDROPHILIC AND HYDROPHOBIC FERROFLUID. Int J Nanosci 2011;08:65-9. [DOI: 10.1142/s0219581x09005748] [Cited by in Crossref: 5] [Article Influence: 0.5] [Reference Citation Analysis]
106 Yu B, Wang Z, Almutairi L, Huang S, Kim MH. Harnessing iron-oxide nanoparticles towards the improved bactericidal activity of macrophage against Staphylococcus aureus. Nanomedicine 2020;24:102158. [PMID: 31982615 DOI: 10.1016/j.nano.2020.102158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
107 Wang K, Kievit FM, Jeon M, Silber JR, Ellenbogen RG, Zhang M. Nanoparticle-Mediated Target Delivery of TRAIL as Gene Therapy for Glioblastoma. Adv Healthc Mater 2015;4:2719-26. [PMID: 26498165 DOI: 10.1002/adhm.201500563] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 6.6] [Reference Citation Analysis]
108 Morana G, Salviato E, Guarise A. Contrast agents for hepatic MRI. Cancer Imaging 2007;7 Spec No A:S24-7. [PMID: 17921081 DOI: 10.1102/1470-7330.2007.9001] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 2.8] [Reference Citation Analysis]
109 Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E. Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett 2009;9:4042-8. [PMID: 19835370 DOI: 10.1021/nl902212q] [Cited by in Crossref: 348] [Cited by in F6Publishing: 311] [Article Influence: 29.0] [Reference Citation Analysis]
110 Yu MK, Park J, Jon S. Magnetic nanoparticles and their applications in image-guided drug delivery. Drug Deliv and Transl Res 2012;2:3-21. [DOI: 10.1007/s13346-011-0049-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
111 Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62:284-304. [PMID: 19909778 DOI: 10.1016/j.addr.2009.11.002] [Cited by in Crossref: 1279] [Cited by in F6Publishing: 1044] [Article Influence: 98.4] [Reference Citation Analysis]
112 Bulte JW. In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol. 2009;193:314-325. [PMID: 19620426 DOI: 10.2214/ajr.09.3107] [Cited by in Crossref: 298] [Cited by in F6Publishing: 164] [Article Influence: 22.9] [Reference Citation Analysis]
113 Zhang J, Chen N, Wang H, Gu W, Liu K, Ai P, Yan C, Ye L. Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J Colloid Interface Sci 2016;469:86-92. [PMID: 26874270 DOI: 10.1016/j.jcis.2016.02.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
114 Yang L, Kuang H, Zhang W, Aguilar ZP, Xiong Y, Lai W, Xu H, Wei H. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale 2015;7:625-36. [PMID: 25423473 DOI: 10.1039/c4nr05061d] [Cited by in Crossref: 101] [Cited by in F6Publishing: 25] [Article Influence: 14.4] [Reference Citation Analysis]
115 Dupas B, Pradal G, Muller RN, Bonnemain B, Meflah K, Bach-Gansmo T. Hepatocyte-mediated transport to the bile of AMI-HS, a particulate contrast agent. Invest Radiol 2001;36:509-17. [PMID: 11547038 DOI: 10.1097/00004424-200109000-00002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
116 Chang D, Kim B, Yun Y, Hur Y, Lee Y, Choi M, Yoon J, Seong J. SUPERPARAMAGNETIC IRON OXIDE-ENHANCED MAGNETIC RESONANCE IMAGING OF THE LIVER IN BEAGLE DOGS. Veterinary Radiology & Ultrasound 2002;43:37-42. [DOI: 10.1111/j.1740-8261.2002.tb00440.x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
117 Kim JI, Chun C, Kim B, Hong JM, Cho J, Lee SH, Song S. Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform. Biomaterials 2012;33:218-24. [DOI: 10.1016/j.biomaterials.2011.09.033] [Cited by in Crossref: 75] [Cited by in F6Publishing: 60] [Article Influence: 7.5] [Reference Citation Analysis]
118 Sakamoto JH, van de Ven AL, Godin B, Blanco E, Serda RE, Grattoni A, Ziemys A, Bouamrani A, Hu T, Ranganathan SI, De Rosa E, Martinez JO, Smid CA, Buchanan RM, Lee SY, Srinivasan S, Landry M, Meyn A, Tasciotti E, Liu X, Decuzzi P, Ferrari M. Enabling individualized therapy through nanotechnology. Pharmacol Res 2010;62:57-89. [PMID: 20045055 DOI: 10.1016/j.phrs.2009.12.011] [Cited by in Crossref: 136] [Cited by in F6Publishing: 98] [Article Influence: 11.3] [Reference Citation Analysis]
119 Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021;13:5285. [PMID: 34771448 DOI: 10.3390/cancers13215285] [Reference Citation Analysis]
120 Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000;18:410-414. [PMID: 10748521 DOI: 10.1038/74464] [Cited by in Crossref: 1348] [Cited by in F6Publishing: 1203] [Article Influence: 61.3] [Reference Citation Analysis]
121 Oude Engberink RD, van der Pol SM, Döpp EA, de Vries HE, Blezer EL. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 2007;243:467-74. [PMID: 17456871 DOI: 10.1148/radiol.2432060120] [Cited by in Crossref: 96] [Cited by in F6Publishing: 94] [Article Influence: 6.4] [Reference Citation Analysis]
122 Saadat M, Manshadi MKD, Mohammadi M, Zare MJ, Zarei M, Kamali R, Sanati-Nezhad A. Magnetic particle targeting for diagnosis and therapy of lung cancers. J Control Release 2020;328:776-91. [PMID: 32920079 DOI: 10.1016/j.jconrel.2020.09.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
123 Van de Walle A, Perez J, Abou-hassan A, Hémadi M, Luciani N, Wilhelm C. Magnetic nanoparticles in regenerative medicine: what of their fate and impact in stem cells? Materials Today Nano 2020;11:100084. [DOI: 10.1016/j.mtnano.2020.100084] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
124 Milto IV, Grishanova AY, Klimenteva TK, Suhodolo IV, Vasukov GY, Ivanova VV. Iron metabolism after application of modified magnetite nanoparticles in rats. Biochemistry Moscow 2014;79:1245-54. [DOI: 10.1134/s0006297914110121] [Cited by in Crossref: 4] [Article Influence: 0.5] [Reference Citation Analysis]
125 Jülke H, Veit C, Ribitsch I, Brehm W, Ludewig E, Delling U. Comparative Labeling of Equine and Ovine Multipotent Stromal Cells With Superparamagnetic Iron Oxide Particles for Magnetic Resonance Imaging In Vitro. Cell Transplant 2015;24:1111-25. [PMID: 24330785 DOI: 10.3727/096368913X675737] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
126 Zhang B, Kim H, Wu H, Gao Y, Jiang X. Sonothrombolysis with magnetic microbubbles under a rotational magnetic field. Ultrasonics 2019;98:62-71. [PMID: 31202970 DOI: 10.1016/j.ultras.2019.06.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 5.7] [Reference Citation Analysis]
127 Zhu XM, Yuan J, Leung KC, Lee SF, Sham KW, Cheng CH, Au DW, Teng GJ, Ahuja AT, Wang YX. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity. Nanoscale 2012;4:5744-54. [PMID: 22895638 DOI: 10.1039/c2nr30960b] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 4.4] [Reference Citation Analysis]
128 Banerjee A, Jariwala T, Baek YK, To DTH, Tai Y, Liu J, Park H, Myung NV, Nam J. Magneto- and opto-stimuli responsive nanofibers as a controlled drug delivery system. Nanotechnology 2021;32. [PMID: 34525464 DOI: 10.1088/1361-6528/ac2700] [Reference Citation Analysis]
129 Wu YJ, Sato K, Ye Q, Ho C. MRI investigations of graft rejection following organ transplantation using rodent models. Methods Enzymol 2004;386:73-105. [PMID: 15120247 DOI: 10.1016/S0076-6879(04)86003-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
130 Casals E, Casals G, Puntes V, Rosenholm JM. Biodistribution, Excretion, and Toxicity of Inorganic Nanoparticles. Theranostic Bionanomaterials. Elsevier; 2019. pp. 3-26. [DOI: 10.1016/b978-0-12-815341-3.00001-8] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
131 Krishnan KM. Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Trans Magn 2010;46:2523-58. [PMID: 20930943 DOI: 10.1109/TMAG.2010.2046907] [Cited by in Crossref: 542] [Cited by in F6Publishing: 125] [Article Influence: 45.2] [Reference Citation Analysis]
132 Ichikawa T, Högemann D, Saeki Y, Tyminski E, Terada K, Weissleder R, Chiocca EA, Basilion JP. MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 2002;4:523-30. [PMID: 12407446 DOI: 10.1038/sj.neo.7900266] [Cited by in Crossref: 86] [Cited by in F6Publishing: 65] [Article Influence: 4.5] [Reference Citation Analysis]
133 Cai Z, Wu C, Yang L, Wang D, Ai H. Assembly-Controlled Magnetic Nanoparticle Clusters as MRI Contrast Agents. ACS Biomater Sci Eng 2020;6:2533-42. [DOI: 10.1021/acsbiomaterials.9b01198] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
134 Neuwelt EA, Weissleder R, Nilaver G, Kroll RA, Roman-goldstein S, Szumowski J, Pagel MA, Jones RS, Remsen LG, Mccormick CI, Shannon EM, Muldoon LL. Delivery of Virus-sized Iron Oxide Particles to Rodent CNS Neurons: . Neurosurgery 1994;34:777-84. [DOI: 10.1227/00006123-199404000-00048] [Cited by in Crossref: 81] [Cited by in F6Publishing: 48] [Article Influence: 2.9] [Reference Citation Analysis]
135 Agut W, Taton D, Brûlet A, Sandre O, Lecommandoux S. Depletion induced vesicle-to-micelle transition from self-assembled rod–coil diblock copolymers with spherical magnetic nanoparticles. Soft Matter 2011;7:9744. [DOI: 10.1039/c1sm05638g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
136 Gaikwad VL, Choudhari PB, Bhatia NM, Bhatia MS. Characterization of pharmaceutical nanocarriers: in vitro and in vivo studies. Nanomaterials for Drug Delivery and Therapy. Elsevier; 2019. pp. 33-58. [DOI: 10.1016/b978-0-12-816505-8.00016-3] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
137 Kato Y, Artemov D. Monitoring of release of cargo from nanocarriers by MRI/MR spectroscopy (MRS): significance of T2/T2* effect of iron particles. Magn Reson Med 2009;61:1059-65. [PMID: 19253373 DOI: 10.1002/mrm.21939] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.2] [Reference Citation Analysis]
138 Bárcena C, Sra AK, Gao J. Applications of Magnetic Nanoparticles in Biomedicine. In: Liu JP, Fullerton E, Gutfleisch O, Sellmyer D, editors. Nanoscale Magnetic Materials and Applications. Boston: Springer US; 2009. pp. 591-626. [DOI: 10.1007/978-0-387-85600-1_20] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
139 Stephen ZR, Kievit FM, Zhang M. Magnetite Nanoparticles for Medical MR Imaging. Mater Today (Kidlington) 2011;14:330-8. [PMID: 22389583 DOI: 10.1016/S1369-7021(11)70163-8] [Cited by in Crossref: 246] [Cited by in F6Publishing: 70] [Article Influence: 22.4] [Reference Citation Analysis]
140 Liu TW, Macdonald TD, Jin CS, Gold JM, Bristow RG, Wilson BC, Zheng G. Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano 2013;7:4221-32. [PMID: 23544841 DOI: 10.1021/nn400669r] [Cited by in Crossref: 74] [Cited by in F6Publishing: 66] [Article Influence: 8.2] [Reference Citation Analysis]
141 Moayeri A, Darvishi M, Amraei M. Homing of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) Labeled Adipose-Derived Stem Cells by Magnetic Attraction in a Rat Model of Parkinson's Disease. Int J Nanomedicine 2020;15:1297-308. [PMID: 32161459 DOI: 10.2147/IJN.S238266] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
142 Day NB, Wixson WC, Shields CW 4th. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 2021;11:2172-96. [PMID: 34522583 DOI: 10.1016/j.apsb.2021.03.023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
143 Korchinski DJ, Taha M, Yang R, Nathoo N, Dunn JF. Iron Oxide as an MRI Contrast Agent for Cell Tracking. Magn Reson Insights. 2015;8:15-29. [PMID: 26483609 DOI: 10.4137/mri.s23557] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
144 Sanson C, Diou O, Thévenot J, Ibarboure E, Soum A, Brûlet A, Miraux S, Thiaudière E, Tan S, Brisson A, Dupuis V, Sandre O, Lecommandoux S. Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for MR Imaging and Magneto-Chemotherapy. ACS Nano 2011;5:1122-40. [DOI: 10.1021/nn102762f] [Cited by in Crossref: 360] [Cited by in F6Publishing: 304] [Article Influence: 32.7] [Reference Citation Analysis]
145 Danhier P, De Preter G, Magat J, Godechal Q, Porporato PE, Jordan BF, Feron O, Sonveaux P, Gallez B. Multimodal cell tracking of a spontaneous metastasis model: comparison between MRI, electron paramagnetic resonance and bioluminescence. Contrast Media Mol Imaging 2014;9:143-53. [PMID: 24523059 DOI: 10.1002/cmmi.1553] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
146 Weissleder R, Bogdanov A, Neuwelt EA, Papisov M. Long-circulating iron oxides for MR imaging. Advanced Drug Delivery Reviews 1995;16:321-34. [DOI: 10.1016/0169-409x(95)00033-4] [Cited by in Crossref: 320] [Cited by in F6Publishing: 1] [Article Influence: 11.9] [Reference Citation Analysis]
147 Yamaguchi M, Ohnuki K, Hotta K, Fujii H. MR signal changes in superparamagnetic iron oxide nanoparticle-labeled macrophages in response to X irradiation. NMR Biomed 2019;32:e4132. [PMID: 31305958 DOI: 10.1002/nbm.4132] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
148 Doerfler A, Engelhorn T, Heiland S, Knauth M, Wanke I, Forsting M. MR contrast agents in acute experimental cerebral ischemia: potential adverse impacts on neurologic outcome and infarction size. J Magn Reson Imaging 2000;11:418-24. [PMID: 10767071 DOI: 10.1002/(sici)1522-2586(200004)11:4<418::aid-jmri10>3.0.co;2-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
149 Nagai M, Yamaguchi M, Mori K, Furuta T, Ashino H, Kurosawa H, Kasahara H, Minami M, Fujii H. Magnetic Resonance-Based Visualization of Thermal Ablative Margins Around Hepatic Tumors by Means of Systemic Ferucarbotran Administration Before Radiofrequency Ablation: Animal Study to Reveal the Connection Between Excess Iron Deposition and T2*-Weighted Hypointensity in Ablative Margins. Investigative Radiology 2015;50:376-83. [DOI: 10.1097/rli.0000000000000137] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
150 Wisel S, Chacko SM, Kuppusamy ML, Pandian RP, Khan M, Kutala VK, Burry RW, Sun B, Kwiatkowski P, Kuppusamy P. Labeling of skeletal myoblasts with a novel oxygen-sensing spin probe for noninvasive monitoring of in situ oxygenation and cell therapy in heart. Am J Physiol Heart Circ Physiol 2007;292:H1254-61. [PMID: 17142337 DOI: 10.1152/ajpheart.01058.2006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 0.9] [Reference Citation Analysis]
151 Alshehri S, Imam SS, Rizwanullah M, Akhter S, Mahdi W, Kazi M, Ahmad J. Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges. Pharmaceutics 2020;13:E24. [PMID: 33374391 DOI: 10.3390/pharmaceutics13010024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
152 Park DH, Lee J. Functionalized nanoparticle probes for protein detection. Electron Mater Lett 2015;11:336-45. [DOI: 10.1007/s13391-014-4383-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
153 Yu X, Wang J, Liu J, Shen S, Cao Z, Pan J, Zhou S, Pang Z, Geng D, Zhang J. A multimodal Pepstatin A peptide-based nanoagent for the molecular imaging of P-glycoprotein in the brains of epilepsy rats. Biomaterials 2016;76:173-86. [DOI: 10.1016/j.biomaterials.2015.10.050] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
154 Min J, Jung H, Shin HH, Cho G, Cho H, Kang S. Implementation of P22 viral capsids as intravascular magnetic resonance T1 contrast conjugates via site-selective attachment of Gd(III)-chelating agents. Biomacromolecules 2013;14:2332-9. [PMID: 23758486 DOI: 10.1021/bm400461j] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
155 Son S, Liang MS, Lei P, Xue X, Furlani EP, Andreadis ST. Magnetofection Mediated Transient NANOG Overexpression Enhances Proliferation and Myogenic Differentiation of Human Hair Follicle Derived Mesenchymal Stem Cells. Bioconjug Chem. 2015;26:1314-1327. [PMID: 25685943 DOI: 10.1021/bc5005203] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
156 Dukenbayev K, Korolkov IV, Tishkevich DI, Kozlovskiy AL, Trukhanov SV, Gorin YG, Shumskaya EE, Kaniukov EY, Vinnik DA, Zdorovets MV, Anisovich M, Trukhanov AV, Tosi D, Molardi C. Fe₃O₄ Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy. Nanomaterials (Basel) 2019;9:E494. [PMID: 30935156 DOI: 10.3390/nano9040494] [Cited by in Crossref: 69] [Cited by in F6Publishing: 26] [Article Influence: 23.0] [Reference Citation Analysis]
157 Markides H, Rotherham M, El Haj AJ. Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine. Journal of Nanomaterials 2012;2012:1-11. [DOI: 10.1155/2012/614094] [Cited by in Crossref: 147] [Cited by in F6Publishing: 75] [Article Influence: 14.7] [Reference Citation Analysis]
158 Aryal S, Key J, Stigliano C, Ananta JS, Zhong M, Decuzzi P. Engineered magnetic hybrid nanoparticles with enhanced relaxivity for tumor imaging. Biomaterials 2013;34:7725-32. [PMID: 23871540 DOI: 10.1016/j.biomaterials.2013.07.003] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 4.8] [Reference Citation Analysis]
159 Glöckl G, Hergt R, Zeisberger M, Dutz S, Nagel S, Weitschies W. The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J Phys : Condens Matter 2006;18:S2935-49. [DOI: 10.1088/0953-8984/18/38/s27] [Cited by in Crossref: 103] [Cited by in F6Publishing: 1] [Article Influence: 6.4] [Reference Citation Analysis]
160 Mayes E, Douek M, Pankhurst Q. Surgical Magnetic Systems and Tracers for Cancer Staging. Magnetic Nanoparticles. CRC Press; 2012. pp. 541-56. [DOI: 10.1201/b11760-27] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
161 Pawelczyk E, Arbab AS, Pandit S, Hu E, Frank JA. Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed 2006;19:581-92. [PMID: 16673357 DOI: 10.1002/nbm.1038] [Cited by in Crossref: 100] [Cited by in F6Publishing: 95] [Article Influence: 6.7] [Reference Citation Analysis]
162 Taylor PM, Hawnaur JM, Hutchinson CE. Superparamagnetic iron oxide imaging of focal liver disease. Clin Radiol. 1995;50:215-219. [PMID: 7729116 DOI: 10.1016/s0009-9260(05)83472-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
163 Duerk JL, Hurst GC. Use of superparamagnetic contrast media to suppress signal from flowing spins: Preliminary experience. J Magn Reson Imaging 1994;4:413-7. [DOI: 10.1002/jmri.1880040329] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.0] [Reference Citation Analysis]
164 Wu S, Lin Y, Hung Y, Chou Y, Hsu Y, Chang C, Mou C. Multifunctional Mesoporous Silica Nanoparticles for Intracellular Labeling and Animal Magnetic Resonance Imaging Studies. ChemBioChem 2008;9:53-7. [DOI: 10.1002/cbic.200700509] [Cited by in Crossref: 166] [Cited by in F6Publishing: 146] [Article Influence: 11.9] [Reference Citation Analysis]
165 Rozenman Y, Zou X, Kantor HL. Magnetic resonance imaging with superparamagnetic iron oxide particles for the detection of myocardial reperfusion. Magnetic Resonance Imaging 1991;9:933-9. [DOI: 10.1016/0730-725x(91)90538-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
166 Volatron J, Kolosnjaj-Tabi J, Javed Y, Vuong QL, Gossuin Y, Neveu S, Luciani N, Hémadi M, Carn F, Alloyeau D, Gazeau F. Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin. Sci Rep 2017;7:40075. [PMID: 28067263 DOI: 10.1038/srep40075] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
167 Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater 2014;13:125-38. [PMID: 24452356 DOI: 10.1038/nmat3780] [Cited by in Crossref: 499] [Cited by in F6Publishing: 478] [Article Influence: 62.4] [Reference Citation Analysis]
168 Zuo CS, Seoane PR, Thomsen M, Gillis T, Meloni E, Harnish PP, Renshaw PF. EVP-ABD-enhanced MRI to evaluate diffuse liver disease in a rat model. J Magn Reson Imaging 2008;27:1317-21. [PMID: 18504762 DOI: 10.1002/jmri.21385] [Reference Citation Analysis]
169 Laconte L, Nitin N, Bao G. Magnetic nanoparticle probes. Materials Today 2005;8:32-8. [DOI: 10.1016/s1369-7021(05)00893-x] [Cited by in Crossref: 127] [Article Influence: 7.5] [Reference Citation Analysis]
170 Danhier P, Gallez B. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. Contrast Media Mol Imaging 2015;10:266-81. [PMID: 25362845 DOI: 10.1002/cmmi.1630] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
171 Vande Berg BC, Lecouvet FE, Kanku JP, Jamart J, Van Beers BE, Maldague B, Malghem J. Ferumoxides-enhanced quantitative magnetic resonance imaging of the normal and abnormal bone marrow: preliminary assessment. J Magn Reson Imaging 1999;9:322-8. [PMID: 10077032 DOI: 10.1002/(sici)1522-2586(199902)9:2<322::aid-jmri26>3.0.co;2-m] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
172 Jafarizad A, Taghizadehgh-alehjougi A, Eskandani M, Hatamzadeh M, Abbasian M, Mohammad-rezaei R, Mohammadzadeh M, Toğar B, Jaymand M. PEGylated graphene oxide/Fe3O4 nanocomposite: Synthesis, characterization, and evaluation of its performance as de novo drug delivery nanosystem. BME 2018;29:177-90. [DOI: 10.3233/bme-171721] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
173 Gamarra LF, Pontuschka WM, Mamani JB, Cornejo DR, Oliveira TR, Vieira ED, Costa-filho AJ, Amaro Jr E. Magnetic characterization by SQUID and FMR of a biocompatible ferrofluid based on Fe 3 O 4. J Phys : Condens Matter 2009;21:115104. [DOI: 10.1088/0953-8984/21/11/115104] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
174 Tuček J, Kemp KC, Kim KS, Zbořil R. Iron-Oxide-Supported Nanocarbon in Lithium-Ion Batteries, Medical, Catalytic, and Environmental Applications. ACS Nano 2014;8:7571-612. [DOI: 10.1021/nn501836x] [Cited by in Crossref: 115] [Cited by in F6Publishing: 84] [Article Influence: 14.4] [Reference Citation Analysis]
175 Kairdolf BA, Qian X, Nie S. Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. Anal Chem 2017;89:1015-31. [DOI: 10.1021/acs.analchem.6b04873] [Cited by in Crossref: 94] [Cited by in F6Publishing: 74] [Article Influence: 18.8] [Reference Citation Analysis]
176 Tsuchiya K, Nitta N, Sonoda A, Nitta-Seko A, Ohta S, Otani H, Takahashi M, Murata K, Murase K, Nohara S, Mukaisho K. Histological study of the biodynamics of iron oxide nanoparticles with different diameters. Int J Nanomedicine 2011;6:1587-94. [PMID: 21845049 DOI: 10.2147/IJN.S22189] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
177 Naumenko V, Garanina A, Nikitin A, Vodopyanov S, Vorobyeva N, Tsareva Y, Kunin M, Ilyasov A, Semkina A, Chekhonin V, Abakumov M, Majouga A. Biodistribution and Tumors MRI Contrast Enhancement of Magnetic Nanocubes, Nanoclusters, and Nanorods in Multiple Mice Models. Contrast Media Mol Imaging 2018;2018:8264208. [PMID: 30344459 DOI: 10.1155/2018/8264208] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
178 He CF, Wang SH, Yu YJ, Shen HY, Zhao Y, Gao HL, Wang H, Li LL, Liu HY. Advances in biodegradable nanomaterials for photothermal therapy of cancer. Cancer Biol Med 2016;13:299-312. [PMID: 27807498 DOI: 10.20892/j.issn.2095-3941.2016.0052] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
179 Hauger O, Delalande C, Deminière C, Fouqueray B, Ohayon C, Garcia S, Trillaud H, Combe C, Grenier N. Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 2000;217:819-26. [PMID: 11110949 DOI: 10.1148/radiology.217.3.r00dc04819] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 2.6] [Reference Citation Analysis]
180 Allkemper T, Bremer C, Matuszewski L, Ebert W, Reimer P. Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology 2002;223:432-8. [PMID: 11997549 DOI: 10.1148/radiol.2232010241] [Cited by in Crossref: 98] [Cited by in F6Publishing: 94] [Article Influence: 4.9] [Reference Citation Analysis]
181 Kwon HJ, Shim WH, Cho G, Cho HJ, Jung HS, Lee CK, Lee YS, Baek JH, Kim EJ, Suh JY, Sung YS, Woo DC, Kim YR, Kim JK. Simultaneous evaluation of vascular morphology, blood volume and transvascular permeability using SPION-based, dual-contrast MRI: imaging optimization and feasibility test. NMR Biomed 2015;28:624-32. [PMID: 25865029 DOI: 10.1002/nbm.3293] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
182 Santiesteban DY, Kubelick K, Dhada KS, Dumani D, Suggs L, Emelianov S. Monitoring/Imaging and Regenerative Agents for Enhancing Tissue Engineering Characterization and Therapies. Ann Biomed Eng 2016;44:750-72. [PMID: 26692081 DOI: 10.1007/s10439-015-1509-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
183 Casals E, Gonzalez E, Puntes VF. Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms. J Phys D: Appl Phys 2012;45:443001. [DOI: 10.1088/0022-3727/45/44/443001] [Cited by in Crossref: 57] [Cited by in F6Publishing: 35] [Article Influence: 5.7] [Reference Citation Analysis]
184 Josephson L, Bigler J, White D. The magnetic properties of some materials affecting MR images. Magn Reson Med 1991;22:204-8. [DOI: 10.1002/mrm.1910220208] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 1.1] [Reference Citation Analysis]
185 Vogl TJ, Hammerstingl R, Schwarz W, Kümmel S, Müller PK, Balzer T, Lauten MJ, Balzer JO, Mack MG, Schimpfky C, Schrem H, Bechstein WO, Neuhaus P, Felix R. Magnetic resonance imaging of focal liver lesions. Comparison of the superparamagnetic iron oxide resovist versus gadolinium-DTPA in the same patient. Invest Radiol 1996;31:696-708. [PMID: 8915751 DOI: 10.1097/00004424-199611000-00004] [Cited by in Crossref: 74] [Cited by in F6Publishing: 62] [Article Influence: 3.0] [Reference Citation Analysis]
186 Van de Walle A, Plan Sangnier A, Abou-Hassan A, Curcio A, Hémadi M, Menguy N, Lalatonne Y, Luciani N, Wilhelm C. Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proc Natl Acad Sci U S A 2019;116:4044-53. [PMID: 30760598 DOI: 10.1073/pnas.1816792116] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 18.0] [Reference Citation Analysis]
187 Wei Q, Wang J, Shi W, Zhang B, Jiang H, Du M, Mei H, Hu Y. Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe. Acta Biomater 2019;90:324-36. [PMID: 30954623 DOI: 10.1016/j.actbio.2019.04.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
188 Shevtsov MA, Nikolaev BP, Ryzhov VA, Yakovleva LY, Dobrodumov AV, Marchenko YY, Margulis BA, Pitkin E, Guzhova IV. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response. Journal of Magnetism and Magnetic Materials 2015;388:123-34. [DOI: 10.1016/j.jmmm.2015.04.030] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 2.9] [Reference Citation Analysis]
189 Jabir NR, Anwar K, Firoz CK, Oves M, Kamal MA, Tabrez S. An overview on the current status of cancer nanomedicines. Current Medical Research and Opinion 2018;34:911-21. [DOI: 10.1080/03007995.2017.1421528] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
190 Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol 2016;38:53-63. [PMID: 27056797 DOI: 10.1016/j.jtemb.2016.03.017] [Cited by in Crossref: 97] [Cited by in F6Publishing: 82] [Article Influence: 16.2] [Reference Citation Analysis]
191 Almeida JP, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 2011;6:815-35. [PMID: 21793674 DOI: 10.2217/nnm.11.79] [Cited by in Crossref: 350] [Cited by in F6Publishing: 316] [Article Influence: 31.8] [Reference Citation Analysis]
192 Ying X, Du Y, Hong L, Yuan H, Hu F. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics. Journal of Magnetism and Magnetic Materials 2011;323:1088-93. [DOI: 10.1016/j.jmmm.2010.12.019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
193 Dutta B, Nema A, Shetake NG, Gupta J, Barick KC, Lawande MA, Pandey BN, Priyadarsini IK, Hassan PA. Glutamic acid-coated Fe3O4 nanoparticles for tumor-targeted imaging and therapeutics. Mater Sci Eng C Mater Biol Appl 2020;112:110915. [PMID: 32409067 DOI: 10.1016/j.msec.2020.110915] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
194 Rivera-Rodriguez A, Hoang-Minh LB, Chiu-Lam A, Sarna N, Marrero-Morales L, Mitchell DA, Rinaldi-Ramos CM. Tracking adoptive T cell immunotherapy using magnetic particle imaging. Nanotheranostics 2021;5:431-44. [PMID: 33972919 DOI: 10.7150/ntno.55165] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
195 Kania G, Sternak M, Jasztal A, Chlopicki S, Błażejczyk A, Nasulewicz-Goldeman A, Wietrzyk J, Jasiński K, Skórka T, Zapotoczny S, Nowakowska M. Uptake and bioreactivity of charged chitosan-coated superparamagnetic nanoparticles as promising contrast agents for magnetic resonance imaging. Nanomedicine 2018;14:131-40. [PMID: 28939490 DOI: 10.1016/j.nano.2017.09.004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 5.4] [Reference Citation Analysis]
196 Dutz S, Hergt R. Magnetic particle hyperthermia—a promising tumour therapy? Nanotechnology 2014;25:452001. [DOI: 10.1088/0957-4484/25/45/452001] [Cited by in Crossref: 295] [Cited by in F6Publishing: 194] [Article Influence: 36.9] [Reference Citation Analysis]
197 Campbell JL, Arora J, Cowell SF, Garg A, Eu P, Bhargava SK, Bansal V. Quasi-cubic magnetite/silica core-shell nanoparticles as enhanced MRI contrast agents for cancer imaging. PLoS One 2011;6:e21857. [PMID: 21747962 DOI: 10.1371/journal.pone.0021857] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 4.5] [Reference Citation Analysis]
198 Suciu M, Ionescu CM, Ciorita A, Tripon SC, Nica D, Al-Salami H, Barbu-Tudoran L. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. Beilstein J Nanotechnol 2020;11:1092-109. [PMID: 32802712 DOI: 10.3762/bjnano.11.94] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
199 Fang C, Zhang M. Multifunctional Magnetic Nanoparticles for Medical Imaging Applications. J Mater Chem 2009;19:6258-66. [PMID: 20593005 DOI: 10.1039/b902182e] [Cited by in Crossref: 230] [Cited by in F6Publishing: 191] [Article Influence: 17.7] [Reference Citation Analysis]
200 Bulte JWM, Ma LD, Magin RL, Kamman RL, Hulstaert CE, Go KG, The TH, De Leij L. Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med 1993;29:32-7. [DOI: 10.1002/mrm.1910290108] [Cited by in Crossref: 105] [Cited by in F6Publishing: 96] [Article Influence: 3.6] [Reference Citation Analysis]
201 Winer JL, Liu CY, Apuzzo ML. The Use of Nanoparticles as Contrast Media in Neuroimaging: A Statement on Toxicity. World Neurosurgery 2012;78:709-11. [DOI: 10.1016/j.wneu.2011.08.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
202 Caramella D, Jin X, Mascalchi M, Agen C, Petruzzi P, Kresse M, Bianucci D, Ceretti E, Semmler W, Bartolozzi C. Liver and spleen enhancement after intravenous injection of carboxydextran magnetite: effect of dose, delay of imaging, and field strength in anex vivo model. MAGMA 1996;4:225-30. [DOI: 10.1007/bf01772010] [Cited by in Crossref: 5] [Article Influence: 0.2] [Reference Citation Analysis]
203 Rosenberg JT, Sachi-kocher A, Davidson MW, Grant SC. Intracellular SPIO labeling of microglia: high field considerations and limitations for MR microscopy: INRACELLULAR SPIOS AT ULTRA-HIGH FIELD. Contrast Media Mol Imaging 2012;7:121-9. [DOI: 10.1002/cmmi.470] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
204 Bierry G, Jehl F, Boehm N, Robert P, Prévost G, Dietemann JL, Desal H, Kremer S. Macrophage activity in infected areas of an experimental vertebral osteomyelitis model: USPIO-enhanced MR imaging--feasibility study. Radiology 2008;248:114-23. [PMID: 18458246 DOI: 10.1148/radiol.2481071260] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 1.4] [Reference Citation Analysis]
205 Bulte JWM, de Jonge MWA, Kamman RL, Go KG, Zuiderveen F, Blaauw B, Oosterbaan JA, Hauw T, de Leij L. Dextran-magnetite particles: Contrast-enhanced MRI of blood–brain barrier disruption in a rat model. Magn Reson Med 1992;23:215-23. [DOI: 10.1002/mrm.1910230203] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 1.0] [Reference Citation Analysis]
206 Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 2012;7:3445-71. [PMID: 22848170 DOI: 10.2147/IJN.S30320] [Cited by in Crossref: 518] [Cited by in F6Publishing: 162] [Article Influence: 51.8] [Reference Citation Analysis]
207 Sherwood J, Lovas K, Rich M, Yin Q, Lackey K, Bolding MS, Bao Y. Shape-dependent cellular behaviors and relaxivity of iron oxide-based T 1 MRI contrast agents. Nanoscale 2016;8:17506-15. [DOI: 10.1039/c6nr06158c] [Cited by in Crossref: 31] [Cited by in F6Publishing: 6] [Article Influence: 5.2] [Reference Citation Analysis]
208 Stroh A, Kressel J, Coras R, Dreyer AY, Fröhlich W, Förschler A, Lobsien D, Blümcke I, Zoubaa S, Schlegel J, Zimmer C, Boltze J. A Safe and Effective Magnetic Labeling Protocol for MRI-Based Tracking of Human Adult Neural Stem Cells. Front Neurosci 2019;13:1092. [PMID: 31680827 DOI: 10.3389/fnins.2019.01092] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
209 Baraki H, Zinne N, Wedekind D, Meier M, Bleich A, Glage S, Hedrich HJ, Kutschka I, Haverich A. Magnetic resonance imaging of soft tissue infection with iron oxide labeled granulocytes in a rat model. PLoS One 2012;7:e51770. [PMID: 23236524 DOI: 10.1371/journal.pone.0051770] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
210 Amstad E, Fischer H, Gehring AU, Textor M, Reimhult E. Magnetic Decoupling of Surface Fe3+ in Magnetite Nanoparticles upon Nitrocatechol-Anchored Dispersant Binding. Chem Eur J 2011;17:7396-8. [DOI: 10.1002/chem.201003504] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
211 Yang Y, Yang Y, Yanasak N, Schumacher A, Hu TC. Temporal and noninvasive monitoring of inflammatory-cell infiltration to myocardial infarction sites using micrometer-sized iron oxide particles. Magn Reson Med 2010;63:33-40. [PMID: 19953508 DOI: 10.1002/mrm.22175] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 2.6] [Reference Citation Analysis]
212 Yocum GT, Wilson LB, Ashari P, Jordan EK, Frank JA, Arbab AS. Effect of human stem cells labeled with ferumoxides-poly-L-lysine on hematologic and biochemical measurements in rats. Radiology 2005;235:547-52. [PMID: 15858093 DOI: 10.1148/radiol.2352040383] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 1.5] [Reference Citation Analysis]
213 Lee HU, Song YS, Park C, Kim SW. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G. Materials Research Bulletin 2012;47:4101-6. [DOI: 10.1016/j.materresbull.2012.08.053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
214 Abbas M, Parvatheeswara Rao B, Naga S, Takahashi M, Kim C. Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction—Surfactantless polyol process. Ceramics International 2013;39:7605-11. [DOI: 10.1016/j.ceramint.2013.03.015] [Cited by in Crossref: 62] [Cited by in F6Publishing: 40] [Article Influence: 6.9] [Reference Citation Analysis]
215 Wimpenny I, Markides H, El Haj AJ. Orthopaedic applications of nanoparticle-based stem cell therapies. Stem Cell Res Ther. 2012;3:13. [PMID: 22520594 DOI: 10.1186/scrt104] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
216 Earls JP, Bluemke DA. NEW MR IMAGING CONTRAST AGENTS. Magnetic Resonance Imaging Clinics of North America 1999;7:255-73. [DOI: 10.1016/s1064-9689(21)00021-0] [Cited by in Crossref: 20] [Article Influence: 0.9] [Reference Citation Analysis]
217 Calvo BF, Semelka RC. Beyond Anatomy. Surgical Oncology Clinics of North America 1999;8:171-83. [DOI: 10.1016/s1055-3207(18)30231-x] [Cited by in Crossref: 9] [Article Influence: 0.4] [Reference Citation Analysis]
218 Feliu N, Docter D, Heine M, Del Pino P, Ashraf S, Kolosnjaj-Tabi J, Macchiarini P, Nielsen P, Alloyeau D, Gazeau F, Stauber RH, Parak WJ. In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev 2016;45:2440-57. [PMID: 26862602 DOI: 10.1039/c5cs00699f] [Cited by in Crossref: 259] [Cited by in F6Publishing: 70] [Article Influence: 51.8] [Reference Citation Analysis]
219 Jivago JLPR, Brito JLM, Capistrano G, Vinícius-Araújo M, Lima Verde E, Bakuzis AF, Souza PEN, Azevedo RB, Lucci CM. New Prospects in Neutering Male Animals Using Magnetic Nanoparticle Hyperthermia. Pharmaceutics 2021;13:1465. [PMID: 34575541 DOI: 10.3390/pharmaceutics13091465] [Reference Citation Analysis]
220 Lauridsen H, Foldager CB, Hansen L, Pedersen M. Non-invasive cell tracking of SPIO labeled cells in an intrinsic regenerative environment: The axolotl limb. Exp Ther Med 2018;15:3311-9. [PMID: 29545849 DOI: 10.3892/etm.2018.5865] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
221 Aspord C, Laurin D, Janier MF, Mandon CA, Thivolet C, Villiers C, Mowat P, Madec AM, Tillement O, Perriat P, Louis C, Bérard F, Marche PN, Plumas J, Billotey C. Paramagnetic nanoparticles to track and quantify in vivo immune human therapeutic cells. Nanoscale 2013;5:11409-15. [PMID: 23838997 DOI: 10.1039/c3nr34240a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
222 Higashihara H, Murakami T, Kim T, Hori M, Onishi H, Nakata S, Osuga K, Tomoda K, Nakamura H. Differential diagnosis between metastatic tumors and nonsolid benign lesions of the liver using ferucarbotran-enhanced MR imaging. European Journal of Radiology 2010;73:125-30. [DOI: 10.1016/j.ejrad.2008.09.028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
223 Constantinidis I, Grant SC, Simpson NE, Oca-Cossio JA, Sweeney CA, Mao H, Blackband SJ, Sambanis A. Use of magnetic nanoparticles to monitor alginate-encapsulated betaTC-tet cells. Magn Reson Med 2009;61:282-90. [PMID: 19165877 DOI: 10.1002/mrm.21833] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
224 Wiegand S, Heinen T, Ramaswamy A, Sesterhenn AM, Bergemann C, Werner JA, Lübbe AS. Evaluation of the tolerance and distribution of intravenously applied ferrofluid particles of 250 and 500 nm size in an animal model. J Drug Target 2009;17:194-9. [PMID: 19016106 DOI: 10.1080/10611860802582467] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
225 Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ. Biological applications of magnetic nanoparticles. Chem Soc Rev 2012;41:4306-34. [PMID: 22481569 DOI: 10.1039/c2cs15337h] [Cited by in Crossref: 844] [Cited by in F6Publishing: 647] [Article Influence: 84.4] [Reference Citation Analysis]
226 Gómez-Vallejo V, Puigivila M, Plaza-García S, Szczupak B, Piñol R, Murillo JL, Sorribas V, Lou G, Veintemillas S, Ramos-Cabrer P, Llop J, Millán A. PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale 2018;10:14153-64. [PMID: 29999506 DOI: 10.1039/c8nr03084g] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
227 Silva AKA, Espinosa A, Kolosnjaj‐tabi J, Wilhelm C, Gazeau F. Medical Applications of Iron Oxide Nanoparticles. In: Faivre D, editor. Iron Oxides. Wiley; 2016. pp. 425-72. [DOI: 10.1002/9783527691395.ch18] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
228 Yoon DY, Yun EJ, Ku YJ, Baek S, Lim KJ, Seo YL, Yie M. Citation classics in radiology journals: the 100 top-cited articles, 1945-2012. AJR Am J Roentgenol 2013;201:471-81. [PMID: 23971438 DOI: 10.2214/AJR.12.10489] [Cited by in Crossref: 64] [Cited by in F6Publishing: 17] [Article Influence: 7.1] [Reference Citation Analysis]
229 Ugga L, Romeo V, Tedeschi E, Brunetti A, Quarantelli M. Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation. J Neurosci Methods 2018;310:12-23. [PMID: 29913184 DOI: 10.1016/j.jneumeth.2018.06.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
230 Chertok B, Cole AJ, David AE, Yang VC. Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Mol Pharm 2010;7:375-85. [PMID: 20039679 DOI: 10.1021/mp900161h] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 5.4] [Reference Citation Analysis]
231 Sosnovik DE, Nahrendorf M, Panizzi P, Matsui T, Aikawa E, Dai G, Li L, Reynolds F, Dorn GW 2nd, Weissleder R, Josephson L, Rosenzweig A. Molecular MRI detects low levels of cardiomyocyte apoptosis in a transgenic model of chronic heart failure. Circ Cardiovasc Imaging 2009;2:468-75. [PMID: 19920045 DOI: 10.1161/CIRCIMAGING.109.863779] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
232 Rigauts H, Baert AL, Veekmans P, Marchal G, Martens A, Zachee P. MRI findings in renal cortical hemosiderosis. Eur J Radiol 1992;15:239-41. [PMID: 1490450 DOI: 10.1016/0720-048x(92)90114-o] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
233 Kato N, Takahashi M, Tsuji T, Ihara S, Brautigam M, Miyazawa T. Dose-Dependency and Rate of Decay of Efficacy of Resovist on MR Images in a Rat Cirrhotic Liver Model: . Investigative Radiology 1999;34:551. [DOI: 10.1097/00004424-199909000-00001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 0.5] [Reference Citation Analysis]
234 Pouliquen D, Perdrisot R, Ermias A, Akoka S, Jallet P, Le Jeune J. Superparamagnetic iron oxide nanoparticles as a liver MRI contrast agent: Contribution of microencapsulation to improved biodistribution. Magnetic Resonance Imaging 1989;7:619-27. [DOI: 10.1016/0730-725x(89)90530-4] [Cited by in Crossref: 47] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
235 Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y. Water-Soluble Ultra Small Paramagnetic or Superparamagnetic Metal Oxide Nanoparticles for Molecular MR Imaging. Eur J Inorg Chem 2009;2009:2477-81. [DOI: 10.1002/ejic.200900173] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 3.5] [Reference Citation Analysis]
236 Serda RE, Mack A, Pulikkathara M, Zaske AM, Chiappini C, Fakhoury JR, Webb D, Godin B, Conyers JL, Liu XW, Bankson JA, Ferrari M. Cellular association and assembly of a multistage delivery system. Small 2010;6:1329-40. [PMID: 20517877 DOI: 10.1002/smll.201000126] [Cited by in Crossref: 78] [Cited by in F6Publishing: 57] [Article Influence: 6.5] [Reference Citation Analysis]
237 Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021;50:3355-423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
238 Gonzales M, Krishnan KM. Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. Journal of Magnetism and Magnetic Materials 2005;293:265-70. [DOI: 10.1016/j.jmmm.2005.02.020] [Cited by in Crossref: 112] [Cited by in F6Publishing: 82] [Article Influence: 6.6] [Reference Citation Analysis]
239 Bronen RA, Sze G. Magnetic resonance imaging contrast agents: theory and application to the central nervous system. Journal of Neurosurgery 1990;73:820-39. [DOI: 10.3171/jns.1990.73.6.0820] [Cited by in Crossref: 53] [Cited by in F6Publishing: 41] [Article Influence: 1.7] [Reference Citation Analysis]
240 Vijayan VM, Beeran AE, Shenoy SJ, Muthu J, Thomas V. New Magneto-Fluorescent Hybrid Polymer Nanogel for Theranostic Applications. ACS Appl Bio Mater 2019;2:757-68. [DOI: 10.1021/acsabm.8b00616] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
241 Low RN. Contrast agents for MR imaging of the liver. J Magn Reson Imaging 1997;7:56-67. [DOI: 10.1002/jmri.1880070109] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 1.4] [Reference Citation Analysis]
242 Schellenberger EA, Bogdanov A Jr, Högemann D, Tait J, Weissleder R, Josephson L. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging 2002;1:102-7. [PMID: 12920851 DOI: 10.1162/15353500200202103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 29] [Article Influence: 0.1] [Reference Citation Analysis]
243 Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017;6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Cited by in Crossref: 94] [Cited by in F6Publishing: 70] [Article Influence: 18.8] [Reference Citation Analysis]
244 Palchoudhury S, Xu Y, Goodwin J, Bao Y. Synthesis of iron oxide nanoworms. Journal of Applied Physics 2011;109:07E314. [DOI: 10.1063/1.3549600] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
245 Idee J, Port M, Raynal I, Schaefer M, Bonnemain B, Prigent P, Robert P, Robic C, Corot C. Superparamagnetic Nanoparticles of Iron Oxides for Magnetic Resonance Imaging Applications. In: Kumar CSSR, editor. Nanotechnologies for the Life Sciences. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2007. [DOI: 10.1002/9783527610419.ntls0108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
246 Li L, Jiang L, Zeng Y, Liu G. Toxicity of superparamagnetic iron oxide nanoparticles: Research strategies and implications for nanomedicine. Chinese Phys B 2013;22:127503. [DOI: 10.1088/1674-1056/22/12/127503] [Cited by in Crossref: 33] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
247 Hansen L, Hansen AB, Mathiasen AB, Ng M, Bhakoo K, Ekblond A, Kastrup J, Friis T. Ultrastructural characterization of mesenchymal stromal cells labeled with ultrasmall superparamagnetic iron-oxide nanoparticles for clinical tracking studies. Scandinavian Journal of Clinical and Laboratory Investigation 2014;74:437-46. [DOI: 10.3109/00365513.2014.900698] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
248 Xing G, Yuan H, He R, Gao X, Jing L, Zhao F, Chai Z, Zhao Y. The Strong MRI Relaxivity of Paramagnetic Nanoparticles. J Phys Chem B 2008;112:6288-91. [DOI: 10.1021/jp8012706] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 3.2] [Reference Citation Analysis]
249 Guenoun J, Ruggiero A, Doeswijk G, Janssens RC, Koning GA, Kotek G, Krestin GP, Bernsen MR. In vivo quantitative assessment of cell viability of gadolinium or iron-labeled cells using MRI and bioluminescence imaging: CELL VIABILITY DETERMINATION OF SPIO OR GD LABELED CELLS. Contrast Media Mol Imaging 2013;8:165-74. [DOI: 10.1002/cmmi.1513] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.0] [Reference Citation Analysis]
250 Wang Y, Xu F, Zhang C, Lei D, Tang Y, Xu H, Zhang Z, Lu H, Du X, Yang GY. High MR sensitive fluorescent magnetite nanocluster for stem cell tracking in ischemic mouse brain. Nanomedicine. 2011;7:1009-1019. [PMID: 21530678 DOI: 10.1016/j.nano.2011.03.006] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.5] [Reference Citation Analysis]
251 Stone R, Willi T, Rosen Y, Mefford OT, Alexis F. Targeted magnetic hyperthermia. Therapeutic Delivery 2011;2:815-38. [DOI: 10.4155/tde.11.48] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
252 Chao Y, Makale M, Karmali PP, Sharikov Y, Tsigelny I, Merkulov S, Kesari S, Wrasidlo W, Ruoslahti E, Simberg D. Recognition of dextran-superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains. Bioconjug Chem 2012;23:1003-9. [PMID: 22515422 DOI: 10.1021/bc200685a] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 4.2] [Reference Citation Analysis]
253 Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as Carriers: From Drug Delivery to Biosensors. Pharmaceutics 2020;12:E276. [PMID: 32197542 DOI: 10.3390/pharmaceutics12030276] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
254 Kerroum MAA, Iacovita C, Baaziz W, Ihiawakrim D, Rogez G, Benaissa M, Lucaciu CM, Ersen O. Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in ZnxFe3-xO4 Nanoparticles. Int J Mol Sci 2020;21:E7775. [PMID: 33096631 DOI: 10.3390/ijms21207775] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
255 Le T, Straatman L, Yanai A, Rahmanian R, Garnis C, Häfeli U, Poblete T, Westerberg B, Gregory-evans K. Magnetic stem cell targeting to the inner ear. Journal of Magnetism and Magnetic Materials 2017;443:385-96. [DOI: 10.1016/j.jmmm.2017.07.033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
256 Rozenman Y, Zou X, Kantor HL. Signal loss induced by superparamagnetic iron oxide particle in NMR spin-echo images: The role of diffusion. Magn Reson Med 1990;14:31-9. [DOI: 10.1002/mrm.1910140105] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 0.8] [Reference Citation Analysis]
257 Shubhra QTH, Tóth J, Gyenis J, Feczkó T. Surface modification of HSA containing magnetic PLGA nanoparticles by poloxamer to decrease plasma protein adsorption. Colloids Surf B Biointerfaces 2014;122:529-36. [PMID: 25092588 DOI: 10.1016/j.colsurfb.2014.07.025] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
258 Cabral Filho PE, Cabrera MP, Cardoso AL, Santana OA, Geraldes CF, Santos BS, Pedroso de Lima MC, Pereira GA, Fontes A. Multimodal highly fluorescent-magnetic nanoplatform to target transferrin receptors in cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects 2018;1862:2788-96. [DOI: 10.1016/j.bbagen.2018.08.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
259 Luque-Michel E, Imbuluzqueta E, Sebastián V, Blanco-Prieto MJ. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin Drug Deliv 2017;14:75-92. [PMID: 27339650 DOI: 10.1080/17425247.2016.1205585] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 6.3] [Reference Citation Analysis]
260 Sundarraj K, Raghunath A, Panneerselvam L, Perumal E. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs. Toxicology and Applied Pharmacology 2017;317:12-24. [DOI: 10.1016/j.taap.2017.01.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
261 Masthoff M, Buchholz R, Beuker A, Wachsmuth L, Kraupner A, Albers F, Freppon F, Helfen A, Gerwing M, Höltke C, Hansen U, Rehkämper J, Vielhaber T, Heindel W, Eisenblätter M, Karst U, Wildgruber M, Faber C. Introducing Specificity to Iron Oxide Nanoparticle Imaging by Combining 57Fe-Based MRI and Mass Spectrometry. Nano Lett 2019;19:7908-17. [PMID: 31556617 DOI: 10.1021/acs.nanolett.9b03016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
262 Ward J, Naik KS, Guthrie JA, Wilson D, Robinson PJ. Hepatic lesion detection: comparison of MR imaging after the administration of superparamagnetic iron oxide with dual-phase CT by using alternative-free response receiver operating characteristic analysis. Radiology 1999;210:459-66. [PMID: 10207430 DOI: 10.1148/radiology.210.2.r99fe05459] [Cited by in Crossref: 187] [Cited by in F6Publishing: 158] [Article Influence: 8.1] [Reference Citation Analysis]
263 Siauve N, Cuénod CA, Clément O, Rasio E, Bendayan M, Frija G. The rete mirabile of the eel: a useful model for the study of transcapillary passage of MR contrast agents. J Magn Reson Imaging 1999;9:353-61. [PMID: 10077037 DOI: 10.1002/(sici)1522-2586(199902)9:2<353::aid-jmri31>3.0.co;2-u] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
264 Chertok B, David AE, Yang VC. Magnetically-enabled and MR-monitored selective brain tumor protein delivery in rats via magnetic nanocarriers. Biomaterials 2011;32:6245-53. [PMID: 21632104 DOI: 10.1016/j.biomaterials.2011.05.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 3.7] [Reference Citation Analysis]
265 Thorek DLJ, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging. Ann Biomed Eng 2006;34:23-38. [DOI: 10.1007/s10439-005-9002-7] [Cited by in Crossref: 537] [Cited by in F6Publishing: 461] [Article Influence: 33.6] [Reference Citation Analysis]
266 Schmidt AM. Thermoresponsive magnetic colloids. Colloid Polym Sci 2007;285:953-66. [DOI: 10.1007/s00396-007-1667-z] [Cited by in Crossref: 145] [Cited by in F6Publishing: 105] [Article Influence: 9.7] [Reference Citation Analysis]
267 Fishbein I, Chorny M, Alferiev IS, Levy RJ. Site Specific Controlled Release for Cardiovascular Disease: Translational Directions. In: Siepmann J, Siegel RA, Rathbone MJ, editors. Fundamentals and Applications of Controlled Release Drug Delivery. Boston: Springer US; 2012. pp. 445-92. [DOI: 10.1007/978-1-4614-0881-9_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
268 Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 2006;78:550-7. [PMID: 16736484 DOI: 10.1002/jbm.a.30781] [Cited by in Crossref: 295] [Cited by in F6Publishing: 261] [Article Influence: 18.4] [Reference Citation Analysis]
269 Oechtering J, Kirkpatrick PJ, Ludolph AG, Hans FJ, Sellhaus B, Spiegelberg A, Krings T. Magnetic microparticles for endovascular aneurysm treatment: in vitro and in vivo experimental results. Neurosurgery 2011;68:1388-97; discussion 1397-8. [PMID: 21311370 DOI: 10.1227/NEU.0b013e3182125eb0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
270 Patil RM, Thorat ND, Shete PB, Bedge PA, Gavde S, Joshi MG, Tofail SAM, Bohara RA. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem Biophys Rep 2018;13:63-72. [PMID: 29349357 DOI: 10.1016/j.bbrep.2017.12.002] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 16.0] [Reference Citation Analysis]
271 Chen CL, Zhang H, Ye Q, Hsieh WY, Hitchens TK, Shen HH, Liu L, Wu YJ, Foley LM, Wang SJ, Ho C. A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging. Mol Imaging Biol 2011;13:825-39. [PMID: 20862612 DOI: 10.1007/s11307-010-0430-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
272 Khandhar AP, Ferguson RM, Simon JA, Krishnan KM. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J Biomed Mater Res 2012;100A:728-37. [DOI: 10.1002/jbm.a.34011] [Cited by in Crossref: 85] [Cited by in F6Publishing: 75] [Article Influence: 7.7] [Reference Citation Analysis]
273 Kim MJ, Kim JH, Lim JS, Oh YT, Chung JJ, Choi JS, Lee WJ, Kim KW. Detection and characterization of focal hepatic lesions: mangafodipir vs. superparamagnetic iron oxide-enhanced magnetic resonance imaging. J Magn Reson Imaging 2004;20:612-21. [PMID: 15390224 DOI: 10.1002/jmri.20174] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]
274 Bauer TA, Horvat NK, Marques O, Chocarro S, Mertens C, Colucci S, Schmitt S, Carrella LM, Morsbach S, Koynov K, Fenaroli F, Blümler P, Jung M, Sotillo R, Hentze MW, Muckenthaler MU, Barz M. Core Cross-Linked Polymeric Micelles for Specific Iron Delivery: Inducing Sterile Inflammation in Macrophages. Adv Healthc Mater 2021;:e2100385. [PMID: 34137217 DOI: 10.1002/adhm.202100385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
275 Jalili NA, Muscarello M, Gaharwar AK. Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications. Bioeng Transl Med 2016;1:297-305. [PMID: 29313018 DOI: 10.1002/btm2.10034] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
276 Sosnovik D, Weissleder R. Magnetic resonance and fluorescence based molecular imaging technologies. Prog Drug Res 2005;62:83-115. [PMID: 16329255 DOI: 10.1007/3-7643-7426-8_3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 1.6] [Reference Citation Analysis]
277 Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S. Effect of Nanoparticles on the Cell Life Cycle. Chem Rev 2011;111:3407-32. [DOI: 10.1021/cr1003166] [Cited by in Crossref: 239] [Cited by in F6Publishing: 211] [Article Influence: 21.7] [Reference Citation Analysis]
278 Mueller KMA, Topping GJ, Schwaminger SP, Zou Y, Rojas-González DM, De-Juan-Pardo EM, Berensmeier S, Schilling F, Mela P. Visualization of USPIO-labeled melt-electrowritten scaffolds by non-invasive magnetic resonance imaging. Biomater Sci 2021;9:4607-12. [PMID: 34096938 DOI: 10.1039/d1bm00461a] [Reference Citation Analysis]
279 Lebrun A, Zhu L. Magnetic Nanoparticle Hyperthermia in Cancer Treatment: History, Mechanism, Imaging-Assisted Protocol Design, and Challenges. In: Shrivastava D, editor. Theory and Applications of Heat Transfer in Humans. Chichester: John Wiley & Sons Ltd; 2018. pp. 631-67. [DOI: 10.1002/9781119127420.ch29] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
280 Luo X, Zhao W, Li B, Zhang X, Zhang C, Bratasz A, Deng B, McComb DW, Dong Y. Co-delivery of mRNA and SPIONs through amino-ester nanomaterials. Nano Res 2018;11:5596-603. [PMID: 31737222 DOI: 10.1007/s12274-018-2082-0] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
281 Tassa C, Shaw SY, Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 2011;44:842-52. [PMID: 21661727 DOI: 10.1021/ar200084x] [Cited by in Crossref: 433] [Cited by in F6Publishing: 386] [Article Influence: 39.4] [Reference Citation Analysis]
282 Gao J, Huang X, Liu H, Zan F, Ren J. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir 2012;28:4464-71. [PMID: 22276658 DOI: 10.1021/la204289k] [Cited by in Crossref: 211] [Cited by in F6Publishing: 181] [Article Influence: 21.1] [Reference Citation Analysis]
283 Chin CL, Pai M, Bousquet PF, Schwartz AJ, O'Connor EM, Nelson CM, Hradil VP, Cox BF, McRae BL, Fox GB. Distinct spatiotemporal pattern of CNS lesions revealed by USPIO-enhanced MRI in MOG-induced EAE rats implicates the involvement of spino-olivocerebellar pathways. J Neuroimmunol 2009;211:49-55. [PMID: 19346009 DOI: 10.1016/j.jneuroim.2009.03.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
284 Gu L, Fang RH, Sailor MJ, Park JH. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano 2012;6:4947-54. [PMID: 22646927 DOI: 10.1021/nn300456z] [Cited by in Crossref: 142] [Cited by in F6Publishing: 130] [Article Influence: 14.2] [Reference Citation Analysis]
285 Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 2005;18:383-9. [PMID: 16013087 DOI: 10.1002/nbm.970] [Cited by in Crossref: 258] [Cited by in F6Publishing: 243] [Article Influence: 15.2] [Reference Citation Analysis]
286 Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012;112:5818-78. [PMID: 23043508 DOI: 10.1021/cr300068p] [Cited by in Crossref: 1330] [Cited by in F6Publishing: 1001] [Article Influence: 133.0] [Reference Citation Analysis]
287 Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin. 2013;63:395-418. [PMID: 24114523 DOI: 10.3322/caac.21199] [Cited by in Crossref: 331] [Cited by in F6Publishing: 296] [Article Influence: 36.8] [Reference Citation Analysis]
288 Schütz MB, Renner AM, Ilyas S, Lê K, Guliyev M, Krapf P, Neumaier B, Mathur S. 18F-Labeled magnetic nanovectors for bimodal cellular imaging. Biomater Sci 2021;9:4717-27. [PMID: 34032225 DOI: 10.1039/d1bm00616a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
289 Awada H, Al Samad A, Laurencin D, Gilbert R, Dumail X, El Jundi A, Bethry A, Pomrenke R, Johnson C, Lemaire L, Franconi F, Félix G, Larionova J, Guari Y, Nottelet B. Controlled Anchoring of Iron Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@Shell Organic–Inorganic Nanocomposites for Magneto-Scaffolds. ACS Appl Mater Interfaces 2019;11:9519-29. [DOI: 10.1021/acsami.8b19099] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
290 EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re‐evaluation of iron oxides and hydroxides (E 172) as food additives. EFS2 2015;13. [DOI: 10.2903/j.efsa.2015.4317] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
291 Tong S, Fine EJ, Lin Y, Cradick TJ, Bao G. Nanomedicine: tiny particles and machines give huge gains. Ann Biomed Eng 2014;42:243-59. [PMID: 24297494 DOI: 10.1007/s10439-013-0952-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
292 Qi Y, Feng G, Huang Z, Yan W. The application of super paramagnetic iron oxide-labeled mesenchymal stem cells in cell-based therapy. Mol Biol Rep 2013;40:2733-40. [PMID: 23269616 DOI: 10.1007/s11033-012-2364-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
293 Bulte JW, Duncan ID, Frank JA. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 2002;22:899-907. [PMID: 12172375 DOI: 10.1097/00004647-200208000-00001] [Cited by in Crossref: 224] [Cited by in F6Publishing: 212] [Article Influence: 11.2] [Reference Citation Analysis]
294 Antonelli A, Sfara C, Manuali E, Bruce IJ, Magnani M. Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine (Lond) 2011;6:211-23. [PMID: 21385124 DOI: 10.2217/nnm.10.163] [Cited by in Crossref: 62] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
295 Easo SL, Mohanan PV. In vitro hematological and in vivo immunotoxicity assessment of dextran stabilized iron oxide nanoparticles. Colloids Surf B Biointerfaces 2015;134:122-30. [PMID: 26183082 DOI: 10.1016/j.colsurfb.2015.06.046] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
296 Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev 2015;115:10637-89. [PMID: 26250431 DOI: 10.1021/acs.chemrev.5b00112] [Cited by in Crossref: 583] [Cited by in F6Publishing: 487] [Article Influence: 83.3] [Reference Citation Analysis]
297 Di Bona KR, Xu Y, Ramirez PA, Delaine J, Parker C, Bao Y, Rasco JF. Surface charge and dosage dependent potential developmental toxicity and biodistribution of iron oxide nanoparticles in pregnant CD-1 mice. Reproductive Toxicology 2014;50:36-42. [DOI: 10.1016/j.reprotox.2014.09.010] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 7.3] [Reference Citation Analysis]
298 Chanyaputhipong J, Low SC, Chow PK. Gadoxetate Acid-Enhanced MR Imaging for HCC: A Review for Clinicians. Int J Hepatol. 2011;2011:489342. [PMID: 21994860 DOI: 10.4061/2011/489342] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
299 Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 2009;20:397-401. [PMID: 19138113 DOI: 10.1021/bc8004649] [Cited by in Crossref: 185] [Cited by in F6Publishing: 156] [Article Influence: 14.2] [Reference Citation Analysis]
300 Abbott JD, Giordano FJ. Stem cells and cardiovascular disease. J Nucl Cardiol 2003;10:403-12. [PMID: 12900745 DOI: 10.1016/s1071-3581(03)00580-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
301 Choi SH, Kim KH, Moon WK, Kim H, Cha JH, Paik JH, Chang K. Comparison of lymph node metastases assessment With the use of USPIO-enhanced MR imaging at 1.5 T versus 3.0 T in a rabbit model: 3.0 T USPIO-Enhanced MRI vs. 1.5 T. J Magn Reson Imaging 2010;31:134-41. [DOI: 10.1002/jmri.22020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
302 Wang K, Kievit FM, Chiarelli PA, Stephen ZR, Lin G, Silber JR, Ellenbogen RG, Zhang M. siRNA nanoparticle suppresses drug-resistant gene and prolongs survival in an orthotopic glioblastoma xenograft mouse model. Adv Funct Mater 2021;31:2007166. [PMID: 33708035 DOI: 10.1002/adfm.202007166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
303 Gutova M, Frank JA, D'Apuzzo M, Khankaldyyan V, Gilchrist MM, Annala AJ, Metz MZ, Abramyants Y, Herrmann KA, Ghoda LY, Najbauer J, Brown CE, Blanchard MS, Lesniak MS, Kim SU, Barish ME, Aboody KS, Moats RA. Magnetic resonance imaging tracking of ferumoxytol-labeled human neural stem cells: studies leading to clinical use. Stem Cells Transl Med 2013;2:766-75. [PMID: 24014682 DOI: 10.5966/sctm.2013-0049] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 7.3] [Reference Citation Analysis]
304 Dhas N, Kudarha R, Pandey A, Nikam AN, Sharma S, Singh A, Garkal A, Hariharan K, Singh A, Bangar P, Yadhav D, Parikh D, Sawant K, Mutalik S, Garg N, Mehta T. Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release 2021;333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
305 Simberg D, Duza T, Park JH, Essler M, Pilch J, Zhang L, Derfus AM, Yang M, Hoffman RM, Bhatia S, Sailor MJ, Ruoslahti E. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci U S A 2007;104:932-6. [PMID: 17215365 DOI: 10.1073/pnas.0610298104] [Cited by in Crossref: 337] [Cited by in F6Publishing: 307] [Article Influence: 22.5] [Reference Citation Analysis]
306 Barrett T, Kobayashi H, Brechbiel M, Choyke PL. Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol. 2006;60:353-366. [PMID: 16930905 DOI: 10.1016/j.ejrad.2006.06.025] [Cited by in Crossref: 114] [Cited by in F6Publishing: 101] [Article Influence: 7.1] [Reference Citation Analysis]
307 Oca-Cossio J, Mao H, Khokhlova N, Kennedy CM, Kennedy JW, Stabler CL, Hao E, Sambanis A, Simpson NE, Constantinidis I. Magnetically labeled insulin-secreting cells. Biochem Biophys Res Commun 2004;319:569-75. [PMID: 15178444 DOI: 10.1016/j.bbrc.2004.04.195] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
308 Elbarbary AM, Ibrahim I, Shafik H, Othman SH. Magnetic 99m Tc- core-shell of polyethylene glycol/polyhydroxyethyl methacrylate based on Fe 3 O 4 nanoparticles: Radiation synthesis, characterization and biodistribution study in tumor bearing mice. Advanced Powder Technology 2017;28:1898-910. [DOI: 10.1016/j.apt.2017.04.025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
309 Reimer P, Müller M, Marx C, Balzer T. Evaluation of the Time Window for Resovist-Enhanced T2-Weighted MRI of the Liver. Academic Radiology 2002;9:S336-8. [DOI: 10.1016/s1076-6332(03)80222-2] [Cited by in Crossref: 7] [Article Influence: 0.4] [Reference Citation Analysis]
310 Ahmad MZ, Akhter S, Jain GK, Rahman M, Pathan SA, Ahmad FJ, Khar RK. Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert Opinion on Drug Delivery 2010;7:927-42. [DOI: 10.1517/17425247.2010.498473] [Cited by in Crossref: 115] [Cited by in F6Publishing: 80] [Article Influence: 9.6] [Reference Citation Analysis]
311 Chorny M, Fishbein I, Tengood JE, Adamo RF, Alferiev IS, Levy RJ. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. FASEB J 2013;27:2198-206. [PMID: 23407712 DOI: 10.1096/fj.12-224659] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
312 Parat A, Bordeianu C, Dib H, Garofalo A, Walter A, Bégin-colin S, Felder-flesch D. Dendrimer–nanoparticle conjugates in nanomedicine. Nanomedicine 2015;10:977-92. [DOI: 10.2217/nnm.14.196] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
313 Croft LR, Goodwill PW, Konkle JJ, Arami H, Price DA, Li AX, Saritas EU, Conolly SM. Low drive field amplitude for improved image resolution in magnetic particle imaging. Med Phys 2016;43:424. [PMID: 26745935 DOI: 10.1118/1.4938097] [Cited by in Crossref: 39] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
314 McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008;60:1241-51. [PMID: 18508157 DOI: 10.1016/j.addr.2008.03.014] [Cited by in Crossref: 688] [Cited by in F6Publishing: 582] [Article Influence: 49.1] [Reference Citation Analysis]
315 Jasmin. In Vitro Labeling Mesenchymal Stem Cells with Superparamagnetic Iron Oxide Nanoparticles: Efficacy and Cytotoxicity. Methods Mol Biol 2020;2118:235-50. [PMID: 32152984 DOI: 10.1007/978-1-0716-0319-2_18] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
316 de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 2005;23:1407-13. [PMID: 16258544 DOI: 10.1038/nbt1154] [Cited by in Crossref: 633] [Cited by in F6Publishing: 576] [Article Influence: 37.2] [Reference Citation Analysis]
317 Astanina K, Simon Y, Cavelius C, Petry S, Kraegeloh A, Kiemer AK. Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production. Acta Biomaterialia 2014;10:4896-911. [DOI: 10.1016/j.actbio.2014.07.027] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
318 Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv 2015;33:1162-76. [PMID: 25689073 DOI: 10.1016/j.biotechadv.2015.02.003] [Cited by in Crossref: 210] [Cited by in F6Publishing: 148] [Article Influence: 30.0] [Reference Citation Analysis]
319 Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 2014;8:389. [PMID: 25505871 DOI: 10.3389/fncel.2014.00389] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 5.6] [Reference Citation Analysis]
320 Oksendal AN, Hals P. Biodistribution and toxicity of MR imaging contrast media. J Magn Reson Imaging 1993;3:157-65. [DOI: 10.1002/jmri.1880030128] [Cited by in Crossref: 116] [Cited by in F6Publishing: 93] [Article Influence: 4.0] [Reference Citation Analysis]
321 Unger EC, Shen D, Fritz TA. Status of liposomes as MR contrast agents. J Magn Reson Imaging 1993;3:195-8. [DOI: 10.1002/jmri.1880030132] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 1.2] [Reference Citation Analysis]
322 Zhang F, Niu G, Lu G, Chen X. Preclinical lymphatic imaging. Mol Imaging Biol 2011;13:599-612. [PMID: 20862613 DOI: 10.1007/s11307-010-0421-y] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
323 Boitard C, Curcio A, Rollet A, Wilhelm C, Ménager C, Griffete N. Biological Fate of Magnetic Protein-Specific Molecularly Imprinted Polymers: Toxicity and Degradation. ACS Appl Mater Interfaces 2019;11:35556-65. [DOI: 10.1021/acsami.9b11717] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
324 Kolosnjaj-tabi J, Javed Y, Lartigue L, Volatron J, Elgrabli D, Marangon I, Pugliese G, Caron B, Figuerola A, Luciani N, Pellegrino T, Alloyeau D, Gazeau F. The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano 2015;9:7925-39. [DOI: 10.1021/acsnano.5b00042] [Cited by in Crossref: 126] [Cited by in F6Publishing: 112] [Article Influence: 18.0] [Reference Citation Analysis]
325 Miller MA, Arlauckas S, Weissleder R. Prediction of Anti-cancer Nanotherapy Efficacy by Imaging. Nanotheranostics 2017;1:296-312. [PMID: 29071194 DOI: 10.7150/ntno.20564] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 7.4] [Reference Citation Analysis]
326 Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B, Friedman G, Levy RJ. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci U S A 2008;105:698-703. [PMID: 18182491 DOI: 10.1073/pnas.0708338105] [Cited by in Crossref: 178] [Cited by in F6Publishing: 153] [Article Influence: 12.7] [Reference Citation Analysis]
327 Brady MA, Talvard L, Vella A, Ethier CR. Bio-inspired design of a magnetically active trilayered scaffold for cartilage tissue engineering: Bio-inspired design of a magnetically active trilayered scaffold. J Tissue Eng Regen Med 2017;11:1298-302. [DOI: 10.1002/term.2106] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
328 Hifumi H, Yamaoka S, Tanimoto A, Citterio D, Suzuki K. Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J Am Chem Soc 2006;128:15090-1. [PMID: 17117851 DOI: 10.1021/ja066442d] [Cited by in Crossref: 204] [Cited by in F6Publishing: 170] [Article Influence: 13.6] [Reference Citation Analysis]
329 Huzaira M, Anderson RR. Magnetite tattoos. Lasers Surg Med 2002;31:121-8. [DOI: 10.1002/lsm.10075] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
330 Sahani D, Saini S, Sharma R, O'malley M, Harisinghani M, Hahn PF, Mueller PR. Characterizing Liver Hemangiomas on Ferumoxides-Enhanced Dynamic Tl-Weighted Imaging. Academic Radiology 2002;9:S255-6. [DOI: 10.1016/s1076-6332(03)80450-6] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
331 Arbab AS, Janic B, Haller J, Pawelczyk E, Liu W, Frank JA. In Vivo Cellular Imaging for Translational Medical Research. Curr Med Imaging Rev 2009;5:19-38. [PMID: 19768136 DOI: 10.2174/157340509787354697] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 4.2] [Reference Citation Analysis]
332 Mani V, Briley-saebo KC, Itskovich VV, Samber DD, Fayad ZA. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): Sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med 2006;55:126-35. [DOI: 10.1002/mrm.20739] [Cited by in Crossref: 163] [Cited by in F6Publishing: 140] [Article Influence: 9.6] [Reference Citation Analysis]
333 Ansari MA, Asiri SMM. Green synthesis, antimicrobial, antibiofilm and antitumor activities of superparamagnetic γ-Fe2O3 NPs and their molecular docking study with cell wall mannoproteins and peptidoglycan. Int J Biol Macromol 2021;171:44-58. [PMID: 33373634 DOI: 10.1016/j.ijbiomac.2020.12.162] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
334 Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Kubinová Š, Dejneka A, Lunov O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. Journal of Controlled Release 2020;328:59-77. [DOI: 10.1016/j.jconrel.2020.08.036] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
335 Bastús NG, Casals E, Vázquez-campos S, Puntes V. Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxicology 2009;2:99-112. [DOI: 10.1080/17435390802217830] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
336 Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater 2018;7. [PMID: 29280314 DOI: 10.1002/adhm.201700845] [Cited by in Crossref: 194] [Cited by in F6Publishing: 127] [Article Influence: 38.8] [Reference Citation Analysis]
337 Canet E, Revel D, Forrat R, Baldy-porcher C, de Lorgeril M, Sebbag L, Vallee J, Didier D, Amiel M. Superparamagnetic iron oxide particles and positive enhancement for myocardial perfusion studies assessed by subsecond T1-weighted MRI. Magnetic Resonance Imaging 1993;11:1139-45. [DOI: 10.1016/0730-725x(93)90241-5] [Cited by in Crossref: 50] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
338 Klein S, Sommer A, Distel LV, Neuhuber W, Kryschi C. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun 2012;425:393-7. [PMID: 22842461 DOI: 10.1016/j.bbrc.2012.07.108] [Cited by in Crossref: 95] [Cited by in F6Publishing: 88] [Article Influence: 9.5] [Reference Citation Analysis]
339 Rahman M, Ahmad MZ, Kazmi I, Akhter S, Afzal M, Gupta G, Jalees Ahmed F, Anwar F. Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opin Drug Deliv 2012;9:367-81. [PMID: 22400808 DOI: 10.1517/17425247.2012.668522] [Cited by in Crossref: 67] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
340 Josephson L, Groman EV, Menz E, Lewis JM, Bengele H. A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent. Magnetic Resonance Imaging 1990;8:637-46. [DOI: 10.1016/0730-725x(90)90143-p] [Cited by in Crossref: 75] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
341 Struys T, Ketkar-atre A, Gervois P, Leten C, Hilkens P, Martens W, Bronckaers A, Dresselaers T, Politis C, Lambrichts I, Himmelreich U. Magnetic Resonance Imaging of Human Dental Pulp Stem Cells in Vitro and in Vivo. Cell Transplant 2013;22:1813-29. [DOI: 10.3727/096368912x657774] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
342 Kamat M, El-Boubbou K, Zhu DC, Lansdell T, Lu X, Li W, Huang X. Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjug Chem 2010;21:2128-35. [PMID: 20977242 DOI: 10.1021/bc100354m] [Cited by in Crossref: 116] [Cited by in F6Publishing: 110] [Article Influence: 9.7] [Reference Citation Analysis]
343 Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11:1449-1470. [PMID: 24870351 DOI: 10.1517/17425247.2014.924501] [Cited by in Crossref: 245] [Cited by in F6Publishing: 211] [Article Influence: 30.6] [Reference Citation Analysis]
344 Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee JM, Jacobs PM, Lewis JM. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 2006;41:313-24. [PMID: 16481915 DOI: 10.1097/01.rli.0000197669.80475.dd] [Cited by in Crossref: 219] [Cited by in F6Publishing: 199] [Article Influence: 13.7] [Reference Citation Analysis]
345 Wang J, Liu Y, Hou Y, Chen Z, Gu N. Near-infrared fluorescence labeling of iron nanoparticles and applications for cell labeling and in vivo imaging. Methods Mol Biol 2012;906:221-37. [PMID: 22791436 DOI: 10.1007/978-1-61779-953-2_17] [Reference Citation Analysis]
346 Cheng WZ, Zeng MS, Yan FH, Rao SX, Shen JZ, Chen CZ, Zhang SJ, Shi WB. Ferucarbotran versus Gd-DTPA-enhanced MR imaging in the detection of focal hepatic lesions. World J Gastroenterol 2007; 13(36): 4891-4896 [PMID: 17828821 DOI: 10.3748/wjg.v13.i36.4891] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
347 Shanehsazzadeh S, Oghabian MA, Daha FJ, Amanlou M, Allen BJ. Biodistribution of ultra small superparamagnetic iron oxide nanoparticles in BALB mice. J Radioanal Nucl Chem 2013;295:1517-23. [DOI: 10.1007/s10967-012-2173-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
348 Nosrati H, Salehiabar M, Davaran S, Ramazani A, Manjili HK, Danafar H. New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res Chem Intermed 2017;43:7423-42. [DOI: 10.1007/s11164-017-3084-3] [Cited by in Crossref: 48] [Cited by in F6Publishing: 32] [Article Influence: 9.6] [Reference Citation Analysis]
349 Yang D, Ye Q, Williams M, Sun Y, Hu TC, Williams DS, Moura JM, Ho C. USPIO-enhanced dynamic MRI: Evaluation of normal and transplanted rat kidneys. Magn Reson Med 2001;46:1152-63. [DOI: 10.1002/mrm.1312] [Cited by in Crossref: 57] [Cited by in F6Publishing: 39] [Article Influence: 2.7] [Reference Citation Analysis]
350 Sulek S, Mammadov B, Mahcicek DI, Sozeri H, Atalar E, Tekinay AB, Guler MO. Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents. J Mater Chem 2011;21:15157. [DOI: 10.1039/c1jm11387a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
351 Lartigue L, Innocenti C, Kalaivani T, Awwad A, Sanchez Duque MDM, Guari Y, Larionova J, Guérin C, Montero JG, Barragan-montero V, Arosio P, Lascialfari A, Gatteschi D, Sangregorio C. Water-Dispersible Sugar-Coated Iron Oxide Nanoparticles. An Evaluation of their Relaxometric and Magnetic Hyperthermia Properties. J Am Chem Soc 2011;133:10459-72. [DOI: 10.1021/ja111448t] [Cited by in Crossref: 189] [Cited by in F6Publishing: 166] [Article Influence: 17.2] [Reference Citation Analysis]
352 Johansson LO, Bjørnerud A, Ahlström HK, Ladd DL, Fujii DK. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J Magn Reson Imaging 2001;13:615-8. [PMID: 11276107 DOI: 10.1002/jmri.1086] [Cited by in Crossref: 88] [Cited by in F6Publishing: 63] [Article Influence: 4.2] [Reference Citation Analysis]
353 Gautier J, Munnier E, Paillard A, Hervé K, Douziech-eyrolles L, Soucé M, Dubois P, Chourpa I. A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. International Journal of Pharmaceutics 2012;423:16-25. [DOI: 10.1016/j.ijpharm.2011.06.010] [Cited by in Crossref: 80] [Cited by in F6Publishing: 67] [Article Influence: 8.0] [Reference Citation Analysis]
354 Aanei IL, Huynh T, Seo Y, Francis MB. Vascular Cell Adhesion Molecule-Targeted MS2 Viral Capsids for the Detection of Early-Stage Atherosclerotic Plaques. Bioconjugate Chem 2018;29:2526-30. [DOI: 10.1021/acs.bioconjchem.8b00453] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
355 Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C, Chat S, Wang G, Vats N, Gendron F, Factor C, Lotersztajn S, Luciani A, Wilhelm C, Gazeau F. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 2011;32:3988-99. [PMID: 21392823 DOI: 10.1016/j.biomaterials.2011.02.031] [Cited by in Crossref: 229] [Cited by in F6Publishing: 200] [Article Influence: 20.8] [Reference Citation Analysis]
356 Niu G, Chen X. Lymphatic imaging: focus on imaging probes. Theranostics 2015;5:686-97. [PMID: 25897334 DOI: 10.7150/thno.11862] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
357 Sano K, Nakajima T, Choyke PL, Kobayashi H. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano. 2013;7:717-724. [PMID: 23214407 DOI: 10.1021/nn305011p] [Cited by in Crossref: 159] [Cited by in F6Publishing: 159] [Article Influence: 15.9] [Reference Citation Analysis]
358 Abdalla MO, Turner T, Yates C. Chemotherapy of Prostate Cancer by Targeted Nanoparticles Trackable by Magnetic Resonance Imaging. ISRN Nanotechnology 2012;2012:1-9. [DOI: 10.5402/2012/407429] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
359 Yu Y, Sun D. Superparamagnetic iron oxide nanoparticle 'theranostics' for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Rev Clin Pharmacol 2010;3:117-30. [PMID: 22111537 DOI: 10.1586/ecp.09.39] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.8] [Reference Citation Analysis]
360 Ling D, Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 2013;9:1450-66. [PMID: 23233377 DOI: 10.1002/smll.201202111] [Cited by in Crossref: 293] [Cited by in F6Publishing: 245] [Article Influence: 29.3] [Reference Citation Analysis]
361 Perez-Balderas F, van Kasteren SI, Aljabali AA, Wals K, Serres S, Jefferson A, Sarmiento Soto M, Khrapitchev AA, Larkin JR, Bristow C, Lee SS, Bort G, De Simone F, Campbell SJ, Choudhury RP, Anthony DC, Sibson NR, Davis BG. Covalent assembly of nanoparticles as a peptidase-degradable platform for molecular MRI. Nat Commun 2017;8:14254. [PMID: 28198362 DOI: 10.1038/ncomms14254] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
362 Liao N, Wu M, Pan F, Lin J, Li Z, Zhang D, Wang Y, Zheng Y, Peng J, Liu X, Liu J. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells. Sci Rep 2016;6:18746. [PMID: 26728448 DOI: 10.1038/srep18746] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
363 Liu JF, Jang B, Issadore D, Tsourkas A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1571. [PMID: 31241251 DOI: 10.1002/wnan.1571] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
364 Shubhra QTH, Kardos AF, Feczkó T, Mackova H, Horák D, Tóth J, Dósa G, Gyenis J. Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part I. Effect of process variables on the mean size. Journal of Microencapsulation 2013;31:147-55. [DOI: 10.3109/02652048.2013.814729] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
365 Shapiro EM, Skrtic S, Koretsky AP. Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magn Reson Med 2005;53:329-38. [DOI: 10.1002/mrm.20342] [Cited by in Crossref: 227] [Cited by in F6Publishing: 209] [Article Influence: 13.4] [Reference Citation Analysis]
366 Meledandri CJ, Stolarczyk JK, Ghosh S, Brougham DF. Nonaqueous Magnetic Nanoparticle Suspensions with Controlled Particle Size and Nuclear Magnetic Resonance Properties. Langmuir 2008;24:14159-65. [DOI: 10.1021/la8018088] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 3.1] [Reference Citation Analysis]
367 Stiskal M, Demsar F, M�hler A, Schwickert HC, Roberts TP, Szolar D, Fischer H, Brasch RC. Contrast-enhanced MR imaging of two superparamagnetic RES-contrast agents: Functional assessment of experimental radiation-induced liver injury. J Magn Reson Imaging 1999;10:52-6. [DOI: 10.1002/(sici)1522-2586(199907)10:1<52::aid-jmri7>3.0.co;2-c] [Cited by in Crossref: 5] [Article Influence: 0.2] [Reference Citation Analysis]
368 Xu W, Park JY, Kattel K, Bony BA, Heo WC, Jin S, Park JW, Chang Y, Do JY, Chae KS, Kim TJ, Park JA, Kwak YW, Lee GH. A T1, T2 magnetic resonance imaging (MRI)-fluorescent imaging (FI) by using ultrasmall mixed gadolinium–europium oxide nanoparticles. New J Chem 2012;36:2361. [DOI: 10.1039/c2nj40149e] [Cited by in Crossref: 29] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
369 Anselmo AC, Mitragotri S. A Review of Clinical Translation of Inorganic Nanoparticles. AAPS J 2015;17:1041-54. [PMID: 25956384 DOI: 10.1208/s12248-015-9780-2] [Cited by in Crossref: 254] [Cited by in F6Publishing: 220] [Article Influence: 36.3] [Reference Citation Analysis]
370 Moon WK, Kim HS. Theranostics for Breast Cancer Stem Cells. Adv Exp Med Biol 2021;1187:267-81. [PMID: 33983583 DOI: 10.1007/978-981-32-9620-6_13] [Reference Citation Analysis]
371 Korolkov IV, Kozlovskiy AL, Gorin YG, Kazantsev AV, Shlimas DI, Zdorovets MV, Ualieva NK, Rusakov VS. Immobilization of carborane derivatives on Ni/Fe nanotubes for BNCT. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4346-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
372 Albert MS, Huang W, Lee JH, Patlak CS, Springer CS Jr. Susceptibility changes following bolus injections. Magn Reson Med 1993;29:700-8. [PMID: 8505909 DOI: 10.1002/mrm.1910290520] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 1.9] [Reference Citation Analysis]
373 Plassat V, Martina MS, Barratt G, Ménager C, Lesieur S. Sterically stabilized superparamagnetic liposomes for MR imaging and cancer therapy: pharmacokinetics and biodistribution. Int J Pharm 2007;344:118-27. [PMID: 17583452 DOI: 10.1016/j.ijpharm.2007.05.018] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 3.3] [Reference Citation Analysis]
374 Liu J, Römer I, Tang SVY, Valsami-jones E, Palmer RE. Crystallinity depends on choice of iron salt precursor in the continuous hydrothermal synthesis of Fe–Co oxide nanoparticles. RSC Adv 2017;7:37436-40. [DOI: 10.1039/c7ra06647c] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
375 Christie C, Madsen SJ, Peng Q, Hirschberg H. Macrophages as nanoparticle delivery vectors for photothermal therapy of brain tumors. Ther Deliv 2015;6:371-84. [PMID: 25853311 DOI: 10.4155/tde.14.121] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
376 Wang Y, Deng L, Caballero-Guzman A, Nowack B. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling. Nanotoxicology 2016;10:1545-54. [PMID: 27781563 DOI: 10.1080/17435390.2016.1242798] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
377 Casals E, Vázquez-campos S, Bastús NG, Puntes V. Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems. TrAC Trends in Analytical Chemistry 2008;27:672-83. [DOI: 10.1016/j.trac.2008.06.004] [Cited by in Crossref: 87] [Cited by in F6Publishing: 59] [Article Influence: 6.2] [Reference Citation Analysis]
378 Macher T, Totenhagen J, Sherwood J, Qin Y, Gurler D, Bolding MS, Bao Y. Ultrathin Iron Oxide Nanowhiskers as Positive Contrast Agents for Magnetic Resonance Imaging. Adv Funct Mater 2015;25:490-4. [DOI: 10.1002/adfm.201403436] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
379 Gholami YH, Yuan H, Wilks MQ, Maschmeyer R, Normandin MD, Josephson L, El Fakhri G, Kuncic Z. A Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging. Int J Nanomedicine 2020;15:1253-66. [PMID: 32161456 DOI: 10.2147/IJN.S241971] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
380 Chaughule RS, Purushotham S, Ramanujan RV. Magnetic Nanoparticles as Contrast Agents for Magnetic Resonance Imaging. Proc Natl Acad Sci , India, Sect A Phys Sci 2012;82:257-68. [DOI: 10.1007/s40010-012-0038-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
381 Wang R, Billone PS, Mullett WM. Nanomedicine in Action: An Overview of Cancer Nanomedicine on the Market and in Clinical Trials. Journal of Nanomaterials 2013;2013:1-12. [DOI: 10.1155/2013/629681] [Cited by in Crossref: 50] [Cited by in F6Publishing: 16] [Article Influence: 5.6] [Reference Citation Analysis]
382 Antell H, Numminen J, Abo-ramadan U, Niemelä MR, Hernesniemi JA, Kangasniemi M. Optimization of high-resolution USPIO magnetic resonance imaging at 4.7 T using novel phantom with minimal structural interference. J Magn Reson Imaging 2010;32:1184-96. [DOI: 10.1002/jmri.22181] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
383 Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001;103:415-22. [PMID: 11157694 DOI: 10.1161/01.cir.103.3.415] [Cited by in Crossref: 411] [Cited by in F6Publishing: 127] [Article Influence: 19.6] [Reference Citation Analysis]
384 McLachlan SJ, Morris MR, Lucas MA, Fisco RA, Eakins MN, Fowler DR, Scheetz RB, Olukotun AY. Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging. 1994;4:301-307. [PMID: 8061425 DOI: 10.1002/jmri.1880040313] [Cited by in Crossref: 148] [Cited by in F6Publishing: 139] [Article Influence: 5.3] [Reference Citation Analysis]
385 Raza K, Kumar P, Kumar N, Malik R. Pharmacokinetics and biodistribution of the nanoparticles. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Elsevier; 2017. pp. 165-86. [DOI: 10.1016/b978-0-08-100557-6.00009-2] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
386 Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 2009;6:1417-28. [PMID: 19445482 DOI: 10.1021/mp900083m] [Cited by in Crossref: 191] [Cited by in F6Publishing: 155] [Article Influence: 14.7] [Reference Citation Analysis]
387 Amstad E, Zurcher S, Mashaghi A, Wong JY, Textor M, Reimhult E. Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small 2009;5:1334-42. [PMID: 19242944 DOI: 10.1002/smll.200801328] [Cited by in Crossref: 179] [Cited by in F6Publishing: 160] [Article Influence: 13.8] [Reference Citation Analysis]
388 Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2009;87:133-70. [PMID: 18926873 DOI: 10.1016/j.pneurobio.2008.09.009] [Cited by in Crossref: 276] [Cited by in F6Publishing: 217] [Article Influence: 19.7] [Reference Citation Analysis]
389 Pai AB, Garba AO. Ferumoxytol: a silver lining in the treatment of anemia of chronic kidney disease or another dark cloud? J Blood Med. 2012;3:77-85. [PMID: 22973119 DOI: 10.2147/jbm.s29204] [Cited by in Crossref: 5] [Cited by in F6Publishing: 20] [Article Influence: 0.5] [Reference Citation Analysis]
390 Paley MR, Mergo PJ, Torres GM, Ros PR. Characterization of focal hepatic lesions with ferumoxides-enhanced T2-weighted MR imaging. AJR Am J Roentgenol. 2000;175:159-163. [PMID: 10882267 DOI: 10.2214/ajr.175.1.1750159] [Cited by in Crossref: 63] [Cited by in F6Publishing: 57] [Article Influence: 2.9] [Reference Citation Analysis]
391 Zanganeh S, Aieneravaie M, Erfanzadeh M, Ho J, Spitler R. Magnetic Particle Imaging (MPI). Iron Oxide Nanoparticles for Biomedical Applications. Elsevier; 2018. pp. 115-33. [DOI: 10.1016/b978-0-08-101925-2.00004-8] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
392 Kim JI, Lee BS, Chun C, Cho JK, Kim SY, Song SC. Long-term theranostic hydrogel system for solid tumors. Biomaterials 2012;33:2251-9. [PMID: 22189146 DOI: 10.1016/j.biomaterials.2011.11.083] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 4.9] [Reference Citation Analysis]
393 Félix-gonzález N, Urbano-bojorge AL, Mina-rosales A, del Pozo-guerrero F, Serrano-olmedo JJ. Assessment of a Heuristic Model for Characterization of Magnetic Nanoparticles as Contrast Agent in MRI. Concepts Magn Reson 2015;44A:279-86. [DOI: 10.1002/cmr.a.21361] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
394 Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood. 2004;104:1217-1223. [PMID: 15100158 DOI: 10.1182/blood-2004-02-0655] [Cited by in Crossref: 425] [Cited by in F6Publishing: 395] [Article Influence: 23.6] [Reference Citation Analysis]
395 Prabu P, Vedakumari WS, Sastry TP. Time-dependent biodistribution, clearance and biocompatibility of magnetic fibrin nanoparticles: an in vivo study. Nanoscale 2015;7:9676-85. [DOI: 10.1039/c5nr00113g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 1.9] [Reference Citation Analysis]
396 Puddu M, Broguiere N, Mohn D, Zenobi-wong M, Stark WJ, Grass RN. Magnetically deliverable calcium phosphate nanoparticles for localized gene expression. RSC Adv 2015;5:9997-10004. [DOI: 10.1039/c4ra13413c] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
397 Rosenberg JT, Yuan X, Grant S, Ma T. Tracking mesenchymal stem cells using magnetic resonance imaging. Brain Circ 2016;2:108-13. [PMID: 30276283 DOI: 10.4103/2394-8108.192521] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
398 Dezortova M, Herynek V, Krssak M, Kronerwetter C, Trattnig S, Hajek M. Two forms of iron as an intrinsic contrast agent in the basal ganglia of PKAN patients. Contrast Media Mol Imaging 2012;7:509-15. [PMID: 22991317 DOI: 10.1002/cmmi.1482] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
399 He H, David A, Chertok B, Cole A, Lee K, Zhang J, Wang J, Huang Y, Yang VC. Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system. Pharm Res 2013;30:2445-58. [PMID: 23344909 DOI: 10.1007/s11095-013-0982-y] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
400 Liu G, Swierczewska M, Niu G, Zhang X, Chen X. Molecular imaging of cell-based cancer immunotherapy. Mol Biosyst 2011;7:993-1003. [PMID: 21308113 DOI: 10.1039/c0mb00198h] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
401 Chen YC, Wen S, Shang SA, Cui Y, Luo B, Teng GJ. Magnetic resonance and near-infrared imaging using a novel dual-modality nano-probe for dendritic cell tracking in vivo. Cytotherapy 2014;16:699-710. [PMID: 24219906 DOI: 10.1016/j.jcyt.2013.09.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
402 Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 2015;115:2109-35. [PMID: 25757742 DOI: 10.1021/cr400714j] [Cited by in Crossref: 297] [Cited by in F6Publishing: 248] [Article Influence: 42.4] [Reference Citation Analysis]
403 Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, Crawford DHG, Xu ZP, Liu X, Roberts MS. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 2015;3:939-58. [PMID: 32261972 DOI: 10.1039/c4tb01611d] [Cited by in Crossref: 67] [Cited by in F6Publishing: 12] [Article Influence: 9.6] [Reference Citation Analysis]
404 Park J, Cho W, Park HJ, Cha KH, Ha DC, Choi YW, Lee HY, Cho SH, Hwang SJ. Biodistribution of newly synthesized PHEA-based polymer-coated SPION in Sprague Dawley rats as magnetic resonance contrast agent. Int J Nanomedicine 2013;8:4077-89. [PMID: 24204138 DOI: 10.2147/IJN.S51684] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
405 Hou Y, Liu Y, Chen Z, Gu N, Wang J. Manufacture of IRDye800CW-coupled Fe3O4 nanoparticles and their applications in cell labeling and in vivo imaging. J Nanobiotechnology 2010;8:25. [PMID: 21034487 DOI: 10.1186/1477-3155-8-25] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
406 Levy M, Wilhelm C, Luciani N, Deveaux V, Gendron F, Luciani A, Devaud M, Gazeau F. Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. Nanoscale 2011;3:4402. [DOI: 10.1039/c1nr10778j] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
407 Adams CF, Rai A, Sneddon G, Yiu HH, Polyak B, Chari DM. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:19-29. [DOI: 10.1016/j.nano.2014.07.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
408 Meola A, Rao J, Chaudhary N, Song G, Zheng X, Chang SD. Magnetic Particle Imaging in Neurosurgery. World Neurosurgery 2019;125:261-70. [DOI: 10.1016/j.wneu.2019.01.180] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
409 Kostiv U, Patsula V, Šlouf M, Pongrac IM, Škokić S, Radmilović MD, Pavičić I, Vrček IV, Gajović S, Horák D. Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe 3 O 4 &SiO 2 core–shell nanoparticles. RSC Adv 2017;7:8786-97. [DOI: 10.1039/c7ra00224f] [Cited by in Crossref: 23] [Article Influence: 4.6] [Reference Citation Analysis]
410 Leuschner C, Kumar CS, Hansel W, Soboyejo W, Zhou J, Hormes J. LHRH-conjugated Magnetic Iron Oxide Nanoparticles for Detection of Breast Cancer Metastases. Breast Cancer Res Treat 2006;99:163-76. [DOI: 10.1007/s10549-006-9199-7] [Cited by in Crossref: 120] [Cited by in F6Publishing: 106] [Article Influence: 7.5] [Reference Citation Analysis]
411 Tian F, Chen G, Yi P, Zhang J, Li A, Zhang J, Zheng L, Deng Z, Shi Q, Peng R, Wang Q. Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques. Biomaterials 2014;35:6412-21. [DOI: 10.1016/j.biomaterials.2014.04.052] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
412 White DL, Aicher KP, Tzika AA, Kucharczyk J, Engelstad BL, Moseley ME. Iron–dextran as a magnetic susceptibility contrast agent: Flow-related contrast effects in the T2-weighted spin-echo MRI of normal rat and cat brain. Magn Reson Med 1992;24:14-28. [DOI: 10.1002/mrm.1910240103] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 0.9] [Reference Citation Analysis]
413 Zhao H, Chen Z, Tao L, Zhu X, Lan M, Li Z. In vitro toxicity evaluation of ultra-small MFe 2 O 4 (M = Fe, Mn, Co) nanoparticles using A549 cells. RSC Adv 2015;5:68454-60. [DOI: 10.1039/c5ra11013k] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
414 Deng SL, Li YQ, Zhao G. Imaging Gliomas with Nanoparticle-Labeled Stem Cells. Chin Med J (Engl) 2018;131:721-30. [PMID: 29521296 DOI: 10.4103/0366-6999.226900] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
415 Kumano S, Murakami T, Kim T, Hori M, Okada A, Sugiura T, Noguchi Y, Kawata S, Tomoda K, Nakamura H. Using superparamagnetic iron oxide-enhanced MRI to differentiate metastatic hepatic tumors and nonsolid benign lesions. AJR Am J Roentgenol 2003;181:1335-9. [PMID: 14573430 DOI: 10.2214/ajr.181.5.1811335] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 2.2] [Reference Citation Analysis]
416 Zhang Z. Radiolabeling of Nanoparticles. In: Zhao Y, Zhang Z, Feng W, editors. Toxicology of Nanomaterials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. pp. 69-94. [DOI: 10.1002/9783527689125.ch4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
417 Chen H, Colvin DC, Qi B, Moore T, He J, Mefford OT, Alexis F, Gore JC, Anker JN. Magnetic and optical properties of multifunctional core-shell radioluminescence nanoparticles. J Mater Chem 2012;22:12802-9. [PMID: 24520183 DOI: 10.1039/C2JM15444G] [Cited by in Crossref: 57] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]
418 Ma YY, Jin KT, Wang SB, Wang HJ, Tong XM, Huang DS, Mou XZ. Molecular Imaging of Cancer with Nanoparticle-Based Theranostic Probes. Contrast Media Mol Imaging 2017;2017:1026270. [PMID: 29097909 DOI: 10.1155/2017/1026270] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
419 Oh J, Feldman MD, Kim J, Condit C, Emelianov S, Milner TE. Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound. Nanotechnology 2006;17:4183-90. [DOI: 10.1088/0957-4484/17/16/031] [Cited by in Crossref: 130] [Cited by in F6Publishing: 69] [Article Influence: 8.1] [Reference Citation Analysis]
420 Parak WJ, Pellegrino T, Plank C. Labelling of cells with quantum dots. Nanotechnology 2005;16:R9-R25. [DOI: 10.1088/0957-4484/16/2/r01] [Cited by in Crossref: 362] [Cited by in F6Publishing: 45] [Article Influence: 21.3] [Reference Citation Analysis]
421 Pedro L, Harmer Q, Mayes E, Shields JD. Impact of Locally Administered Carboxydextran-Coated Super-Paramagnetic Iron Nanoparticles on Cellular Immune Function. Small 2019;15:e1900224. [PMID: 30985079 DOI: 10.1002/smll.201900224] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
422 Lewinska A, Adamczyk-Grochala J, Bloniarz D, Olszowka J, Kulpa-Greszta M, Litwinienko G, Tomaszewska A, Wnuk M, Pazik R. AMPK-mediated senolytic and senostatic activity of quercetin surface functionalized Fe3O4 nanoparticles during oxidant-induced senescence in human fibroblasts. Redox Biol 2020;28:101337. [PMID: 31622846 DOI: 10.1016/j.redox.2019.101337] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
423 Ghasempour S, Shokrgozar MA, Ghasempour R, Alipour M. Investigating the cytotoxicity of iron oxide nanoparticles in in vivo and in vitro studies. Experimental and Toxicologic Pathology 2015;67:509-15. [DOI: 10.1016/j.etp.2015.07.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
424 Corot C, Petry KG, Trivedi R, Saleh A, Jonkmanns C, Le Bas J, Blezer E, Rausch M, Brochet B, Foster-gareau P, Balériaux D, Gaillard S, Dousset V. Macrophage Imaging in Central Nervous System and in Carotid Atherosclerotic Plaque Using Ultrasmall Superparamagnetic Iron Oxide in Magnetic Resonance Imaging. Investigative Radiology 2004;39:619-25. [DOI: 10.1097/01.rli.0000135980.08491.33] [Cited by in Crossref: 169] [Cited by in F6Publishing: 145] [Article Influence: 9.4] [Reference Citation Analysis]
425 Bai R, Zhang L, Liu Y, Meng L, Wang L, Wu Y, Li W, Ge C, Le Guyader L, Chen C. Pulmonary responses to printer toner particles in mice after intratracheal instillation. Toxicol Lett 2010;199:288-300. [PMID: 20883754 DOI: 10.1016/j.toxlet.2010.09.011] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 4.5] [Reference Citation Analysis]
426 Viota JL, Carazo A, Munoz-Gamez JA, Rudzka K, Gómez-Sotomayor R, Ruiz-Extremera A, Salmerón J, Delgado AV. Functionalized magnetic nanoparticles as vehicles for the delivery of the antitumor drug gemcitabine to tumor cells. Physicochemical in vitro evaluation. Mater Sci Eng C Mater Biol Appl. 2013;33:1183-1192. [PMID: 23827558 DOI: 10.1016/j.msec.2012.12.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
427 AlSadek DMM, Badr HA, Al-Shafie TA, El-Bahr SM, El-Houseini ME, Djansugurova LB, Li CZ, Ahmed H. Cancer cell death induced by nanomagnetolectin. Eur J Cell Biol 2017;96:600-11. [PMID: 28521959 DOI: 10.1016/j.ejcb.2017.04.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
428 Eppenberger P, Andreisek G, Chhabra A. Magnetic resonance neurography: diffusion tensor imaging and future directions. Neuroimaging Clin N Am. 2014;24:245-256. [PMID: 24210323 DOI: 10.1016/j.nic.2013.03.031] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
429 Lee HU, Park C, Kim SW. Immobilization of glucose oxidase onto cobalt based on silica core/shell nanoparticles as carrier. Process Biochemistry 2012;47:1282-6. [DOI: 10.1016/j.procbio.2012.04.027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
430 Portnoy E, Polyak B, Inbar D, Kenan G, Rai A, Wehrli SL, Roberts TP, Bishara A, Mann A, Shmuel M, Rozovsky K, Itzhak G, Ben-hur T, Magdassi S, Ekstein D, Eyal S. Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2016;12:1335-45. [DOI: 10.1016/j.nano.2016.01.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
431 Danhier P, Magat J, Levêque P, De Preter G, Porporato PE, Bouzin C, Jordan BF, Demeur G, Haufroid V, Feron O, Sonveaux P, Gallez B. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance. NMR Biomed 2015;28:367-75. [PMID: 25611487 DOI: 10.1002/nbm.3259] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
432 Wang YX, Xuan S, Port M, Idee JM. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des 2013;19:6575-93. [PMID: 23621536 DOI: 10.2174/1381612811319370003] [Cited by in Crossref: 70] [Cited by in F6Publishing: 62] [Article Influence: 8.8] [Reference Citation Analysis]
433 Gessner I. Optimizing nanoparticle design and surface modification toward clinical translation. MRS Bull 2021;:1-7. [PMID: 34305307 DOI: 10.1557/s43577-021-00132-1] [Reference Citation Analysis]
434 Adamo RF, Fishbein I, Zhang K, Wen J, Levy RJ, Alferiev IS, Chorny M. Magnetically enhanced cell delivery for accelerating recovery of the endothelium in injured arteries. J Control Release 2016;222:169-75. [PMID: 26704936 DOI: 10.1016/j.jconrel.2015.12.025] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
435 Ravindranath RR, Romaschin A, Thompson M. In vitro and in vivo cell-capture strategies using cardiac stent technology - A review. Clin Biochem 2016;49:186-91. [PMID: 26474510 DOI: 10.1016/j.clinbiochem.2015.09.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
436 Min SH, Kim JH, Kang YM, Lee SH, Oh BM, Han KS, Zhang M, Kim HS, Moon WK, Lee H, Park KS, Jung HS. Transplantation of human mobilized mononuclear cells improved diabetic neuropathy. J Endocrinol 2018;239:277-87. [PMID: 30400012 DOI: 10.1530/JOE-18-0516] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
437 Butoescu N, Jordan O, Petri-fink A, Hofmann H, Doelker E. Co-encapsulation of dexamethasone 21-acetate and SPIONs into biodegradable polymeric microparticles designed for intra-articular delivery. Journal of Microencapsulation 2008;25:339-50. [DOI: 10.1080/02652040801999551] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]
438 Lee IJ, Park JY, Kim YI, Lee YS, Jeong JM, Kim J, Kim EE, Kang KW, Lee DS, Jeong S, Kim EJ, Kim YI, Chung JW. Image-Based Analysis of Tumor Localization After Intra-Arterial Delivery of Technetium-99m-Labeled SPIO Using SPECT/CT and MRI. Mol Imaging 2017;16:1536012116689001. [PMID: 28654377 DOI: 10.1177/1536012116689001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
439 Okada M, Katsube T, Kumano S, Kagawa Y, Araki T, Tsuda N, Okuaki T, Imaoka I, Tanigawa N, Ishii K, Murakami T. Unenhanced fat fraction ratios obtained by MR and enhanced T2* values with liver-specific MR contrast agents for diagnosis of non-alcoholic steatohepatitis in rats. Acta Radiol 2011;52:658-64. [DOI: 10.1258/ar.2011.100360] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
440 Tong S, Hou S, Zheng Z, Zhou J, Bao G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 2010;10:4607-13. [PMID: 20939602 DOI: 10.1021/nl102623x] [Cited by in Crossref: 304] [Cited by in F6Publishing: 282] [Article Influence: 27.6] [Reference Citation Analysis]
441 Bi F, Zhang J, Su Y, Tang YC, Liu JN. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 2009;30:5125-30. [PMID: 19560812 DOI: 10.1016/j.biomaterials.2009.06.006] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 5.2] [Reference Citation Analysis]
442 Hauser AK, Mitov MI, Daley EF, McGarry RC, Anderson KW, Hilt JZ. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 2016;105:127-35. [PMID: 27521615 DOI: 10.1016/j.biomaterials.2016.07.032] [Cited by in Crossref: 82] [Cited by in F6Publishing: 75] [Article Influence: 13.7] [Reference Citation Analysis]
443 Jansman MMT, Hosta-rigau L. Cerium- and Iron-Oxide-Based Nanozymes in Tissue Engineering and Regenerative Medicine. Catalysts 2019;9:691. [DOI: 10.3390/catal9080691] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
444 Mohapatra S, Asfer M, Anwar M, Ahmed S, Ahmad FJ, Siddiqui AA. Carboxymethyl Assam Bora rice starch coated SPIONs: Synthesis, characterization and in vitro localization in a micro capillary for simulating a targeted drug delivery system. International Journal of Biological Macromolecules 2018;115:920-32. [DOI: 10.1016/j.ijbiomac.2018.04.152] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
445 Li R, Wang J, Yu X, Xu P, Zhang S, Xu J, Bai Y, Dai Z, Sun Y, Ye R, Liu X, Ruan G, Xu G. Enhancing the effects of transcranial magnetic stimulation with intravenously injected magnetic nanoparticles. Biomater Sci. 2019;7:2297-2307. [PMID: 31050344 DOI: 10.1039/c9bm00178f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
446 Van Den Bos EJ, Wagner A, Mahrholdt H, Thompson RB, Morimoto Y, Sutton BS, Judd RM, Taylor DA. Improved Efficacy of Stem Cell Labeling for Magnetic Resonance Imaging Studies by the Use of Cationic Liposomes. Cell Transplant 2003;12:743-56. [DOI: 10.3727/000000003108747352] [Cited by in Crossref: 86] [Cited by in F6Publishing: 76] [Article Influence: 17.2] [Reference Citation Analysis]
447 Jasmin, Torres AL, Jelicks L, de Carvalho AC, Spray DC, Mendez-Otero R. Labeling stem cells with superparamagnetic iron oxide nanoparticles: analysis of the labeling efficacy by microscopy and magnetic resonance imaging. Methods Mol Biol 2012;906:239-52. [PMID: 22791437 DOI: 10.1007/978-1-61779-953-2_18] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
448 Hamm B, Staks T, Taupitz M, Maibauer R, Speidel A, Huppertz A, Frenzel T, Lawaczeck R, Wolf KJ, Lange L. Contrast-enhanced MR imaging of liver and spleen: first experience in humans with a new superparamagnetic iron oxide. J Magn Reson Imaging. 1994;4:659-668. [PMID: 7981510 DOI: 10.1002/jmri.1880040508] [Cited by in Crossref: 126] [Cited by in F6Publishing: 130] [Article Influence: 4.7] [Reference Citation Analysis]
449 Morana G, Grazioli L, Testoni M, Caccia P, Procacci C. Contrast Agents for Hepatic Magnetic Resonance Imaging: . Topics in Magnetic Resonance Imaging 2002;13:117-50. [DOI: 10.1097/00002142-200206000-00002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 0.7] [Reference Citation Analysis]
450 Aisida SO, Akpa PA, Ahmad I, Maaza M, Ezema FI. Influence of PVA, PVP and PEG doping on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method. Physica B: Condensed Matter 2019;571:130-6. [DOI: 10.1016/j.physb.2019.07.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 11] [Article Influence: 12.3] [Reference Citation Analysis]
451 Liu HL, Wai YY, Hsu PH, Lyu LA, Wu JS, Shen CR, Chen JC, Yen TC, Wang JJ. In vivo assessment of macrophage CNS infiltration during disruption of the blood-brain barrier with focused ultrasound: a magnetic resonance imaging study. J Cereb Blood Flow Metab 2010;30:177-86. [PMID: 19724289 DOI: 10.1038/jcbfm.2009.179] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
452 Easo SL, Mohanan P. Hepatotoxicity evaluation of dextran stabilized iron oxide nanoparticles in Wistar rats. International Journal of Pharmaceutics 2016;509:28-34. [DOI: 10.1016/j.ijpharm.2016.05.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
453 Cuyper MD, M ller P, Lueken H, Hodenius M. Synthesis of magnetic Fe 3 O 4 particles covered with a modifiable phospholipid coat. J Phys : Condens Matter 2003;15:S1425-36. [DOI: 10.1088/0953-8984/15/15/308] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 1.5] [Reference Citation Analysis]
454 Létourneau M, Tremblay M, Faucher L, Rojas D, Chevallier P, Gossuin Y, Lagueux J, Fortin MA. MnO-labeled cells: positive contrast enhancement in MRI. J Phys Chem B 2012;116:13228-38. [PMID: 23030472 DOI: 10.1021/jp3032918] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
455 Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003;229:838-846. [PMID: 14657318 DOI: 10.1148/radiol.2293021215] [Cited by in Crossref: 448] [Cited by in F6Publishing: 415] [Article Influence: 24.9] [Reference Citation Analysis]
456 Laurent S, Henoumont C, Stanicki D, Boutry S, Lipani E, Belaid S, Muller RN, Vander Elst L. Superparamagnetic Iron Oxide Nanoparticles. MRI Contrast Agents. Singapore: Springer; 2017. pp. 55-109. [DOI: 10.1007/978-981-10-2529-7_5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
457 Zhu T, Lichlyter DJ, Haidekker MA, Mao L. Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluid 2011;10:1233-45. [DOI: 10.1007/s10404-010-0754-5] [Cited by in Crossref: 72] [Cited by in F6Publishing: 45] [Article Influence: 6.5] [Reference Citation Analysis]
458 Shan L, Chopra A, Leung K, Eckelman WC, Menkens AE. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging. J Nanopart Res 2012;14. [DOI: 10.1007/s11051-012-1122-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
459 Zhang L, Liu Z, Liu Y, Wang Y, Tang P, Wu Y, Huang H, Gan Z, Liu J, Wu D. Ultrathin surface coated water-soluble cobalt ferrite nanoparticles with high magnetic heating efficiency and rapid in vivo clearance. Biomaterials 2020;230:119655. [DOI: 10.1016/j.biomaterials.2019.119655] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
460 Anzai Y, Prince MR. Iron oxide-enhanced MR lymphography: The evaluation of cervical lymph node metastases in head and neck cancer. J Magn Reson Imaging 1997;7:75-81. [DOI: 10.1002/jmri.1880070111] [Cited by in Crossref: 79] [Cited by in F6Publishing: 61] [Article Influence: 3.2] [Reference Citation Analysis]
461 Birhanu G, Javar HA, Seyedjafari E, Zandi-Karimi A. Nanotechnology for delivery of gemcitabine to treat pancreatic cancer. Biomed Pharmacother 2017;88:635-43. [PMID: 28142120 DOI: 10.1016/j.biopha.2017.01.071] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
462 Taupitz M, Schnorr J, Wagner S, Abramjuk C, Pilgrimm H, Kivelitz D, Schink T, Hansel J, Laub G, Hünigen H, Hamm B. Coronary MR Angiography: Experimental Results with a Monomer-stabilized Blood Pool Contrast Medium. Radiology 2002;222:120-6. [DOI: 10.1148/radiol.2221001452] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 1.7] [Reference Citation Analysis]
463 Rahimi M, Kameli P, Ranjbar M, Salamati H. The effect of polyvinyl alcohol (PVA) coating on structural, magnetic properties and spin dynamics of Ni0.3Zn0.7Fe2O4 ferrite nanoparticles. Journal of Magnetism and Magnetic Materials 2013;347:139-45. [DOI: 10.1016/j.jmmm.2013.08.004] [Cited by in Crossref: 39] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
464 Rosenberg JT, Yuan X, Helsper SN, Bagdasarian FA, Ma T, Grant SC. Effects of labeling human mesenchymal stem cells with superparamagnetic iron oxides on cellular functions and magnetic resonance contrast in hypoxic environments and long-term monitoring. Brain Circ 2018;4:133-8. [PMID: 30450421 DOI: 10.4103/bc.bc_18_18] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
465 Cho HR, Choi SH, Lee N, Hyeon T, Kim H, Moon WK. Macrophages homing to metastatic lymph nodes can be monitored with ultrasensitive ferromagnetic iron-oxide nanocubes and a 1.5T clinical MR scanner. PLoS One 2012;7:e29575. [PMID: 22253739 DOI: 10.1371/journal.pone.0029575] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
466 Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today (Kidlington) 2016;19:157-68. [PMID: 27524934 DOI: 10.1016/j.mattod.2015.08.022] [Cited by in Crossref: 302] [Cited by in F6Publishing: 231] [Article Influence: 50.3] [Reference Citation Analysis]
467 Harms C, Datwyler AL, Wiekhorst F, Trahms L, Lindquist R, Schellenberger E, Mueller S, Schütz G, Roohi F, Ide A, Füchtemeier M, Gertz K, Kronenberg G, Harms U, Endres M, Dirnagl U, Farr TD. Certain types of iron oxide nanoparticles are not suited to passively target inflammatory cells that infiltrate the brain in response to stroke. J Cereb Blood Flow Metab 2013;33:e1-9. [PMID: 23443176 DOI: 10.1038/jcbfm.2013.22] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
468 Vadala ML, Zalich MA, Fulks DB, St. Pierre TG, Dailey JP, Riffle JS. Cobalt–silica magnetic nanoparticles with functional surfaces. Journal of Magnetism and Magnetic Materials 2005;293:162-70. [DOI: 10.1016/j.jmmm.2005.01.056] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
469 Hahn PF, Stark DD, Ferrucci JT. Accumulation of iron oxide particles around liver metastases during MR imaging. Gastrointest Radiol 1992;17:173-4. [DOI: 10.1007/bf01888539] [Cited by in Crossref: 4] [Article Influence: 0.1] [Reference Citation Analysis]
470 El-Dakdouki MH, El-Boubbou K, Kamat M, Huang R, Abela GS, Kiupel M, Zhu DC, Huang X. CD44 targeting magnetic glyconanoparticles for atherosclerotic plaque imaging. Pharm Res 2014;31:1426-37. [PMID: 23568520 DOI: 10.1007/s11095-013-1021-8] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
471 Adamiano A, Iafisco M, Sandri M, Basini M, Arosio P, Canu T, Sitia G, Esposito A, Iannotti V, Ausanio G, Fragogeorgi E, Rouchota M, Loudos G, Lascialfari A, Tampieri A. On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging. Acta Biomaterialia 2018;73:458-69. [DOI: 10.1016/j.actbio.2018.04.040] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
472 Elias A, Tsourkas A. Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology 2009;2009:720-6. [DOI: 10.1182/asheducation-2009.1.720] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 4.7] [Reference Citation Analysis]
473 Zhang L, Yu F, Cole AJ, Chertok B, David AE, Wang J, Yang VC. Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging. AAPS J 2009;11:693-9. [PMID: 19842043 DOI: 10.1208/s12248-009-9151-y] [Cited by in Crossref: 79] [Cited by in F6Publishing: 64] [Article Influence: 6.1] [Reference Citation Analysis]
474 Jun Y, Lee J, Cheon J. Chemisches Design von leistungsfähigen Nanosonden für die Kernspintomographie. Angew Chem 2008;120:5200-13. [DOI: 10.1002/ange.200701674] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 3.3] [Reference Citation Analysis]
475 Mu Q, Jeon M, Hsiao MH, Patton VK, Wang K, Press OW, Zhang M. Stable and efficient Paclitaxel nanoparticles for targeted glioblastoma therapy. Adv Healthc Mater 2015;4:1236-45. [PMID: 25761648 DOI: 10.1002/adhm.201500034] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
476 Ishino K, Kato T, Kato M, Shibata T, Watanabe M, Wakabayashi K, Nakagama H, Totsuka Y. Comprehensive DNA adduct analysis reveals pulmonary inflammatory response contributes to genotoxic action of magnetite nanoparticles. Int J Mol Sci 2015;16:3474-92. [PMID: 25658799 DOI: 10.3390/ijms16023474] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
477 Yiu HHP, Mcbain SC, Lethbridge ZAD, Lees MR, Dobson J. Preparation and characterization of polyethylenimine-coated Fe 3 O 4 -MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. J Biomed Mater Res 2010;92A:386-92. [DOI: 10.1002/jbm.a.32363] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 3.9] [Reference Citation Analysis]
478 Thurman JM, Serkova NJ. Nanosized contrast agents to noninvasively detect kidney inflammation by magnetic resonance imaging. Adv Chronic Kidney Dis. 2013;20:488-499. [PMID: 24206601 DOI: 10.1053/j.ackd.2013.06.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
479 Boitard C, Bée A, Ménager C, Griffete N. Magnetic protein imprinted polymers: a review. J Mater Chem B 2018;6:1563-80. [PMID: 32254273 DOI: 10.1039/c7tb02985c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
480 Zamay GS, Zamay TN, Lukyanenko KA, Kichkailo AS. Aptamers Increase Biocompatibility and Reduce the Toxicity of Magnetic Nanoparticles Used in Biomedicine. Biomedicines 2020;8:E59. [PMID: 32183370 DOI: 10.3390/biomedicines8030059] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
481 Raeisi Shahraki R, Seyyed Ebrahim SA, Masoudpanah SM. Synthesis and Characterization of Superparamagnetic Zinc Ferrite–Chitosan Composite Nanoparticles. J Supercond Nov Magn 2015;28:2143-7. [DOI: 10.1007/s10948-015-3015-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
482 Javed Y, Lartigue L, Hugounenq P, Vuong QL, Gossuin Y, Bazzi R, Wilhelm C, Ricolleau C, Gazeau F, Alloyeau D. Biodegradation Mechanisms of Iron Oxide Monocrystalline Nanoflowers and Tunable Shield Effect of Gold Coating. Small 2014;10:3325-37. [DOI: 10.1002/smll.201400281] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
483 Häfeli UO, Aue J, Damani J. The biocompatibility and toxicity of magnetic particles. Magnetic Cell Separation. Elsevier; 2007. pp. 163-223. [DOI: 10.1016/s0075-7535(06)32007-4] [Cited by in Crossref: 7] [Article Influence: 0.5] [Reference Citation Analysis]
484 Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG. Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J. 2006;35:446-450. [PMID: 16447039 DOI: 10.1007/s00249-006-0042-1] [Cited by in Crossref: 253] [Cited by in F6Publishing: 201] [Article Influence: 15.8] [Reference Citation Analysis]
485 Gessner I, Park JH, Lin HY, Lee H, Weissleder R. Magnetic Gold Nanoparticles with Idealized Coating for Enhanced Point-Of-Care Sensing. Adv Healthc Mater 2021;:e2102035. [PMID: 34747576 DOI: 10.1002/adhm.202102035] [Reference Citation Analysis]
486 Villaraza AJ, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 2010;110:2921-59. [PMID: 20067234 DOI: 10.1021/cr900232t] [Cited by in Crossref: 466] [Cited by in F6Publishing: 408] [Article Influence: 38.8] [Reference Citation Analysis]
487 Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 2012;112:2323-38. [PMID: 22216932 DOI: 10.1021/cr2002596] [Cited by in Crossref: 382] [Cited by in F6Publishing: 322] [Article Influence: 34.7] [Reference Citation Analysis]
488 Raphael MP, Christodoulides JA, Qadri SN, Simpkins BS, Byers JM. Magnetic moment degradation of nanowires in biological media: real-time monitoring with SQUID magnetometry. Nanotechnology 2010;21:285101. [PMID: 20562492 DOI: 10.1088/0957-4484/21/28/285101] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
489 Jenkins JT, Halaney DL, Sokolov KV, Ma LL, Shipley HJ, Mahajan S, Louden CL, Asmis R, Milner TE, Johnston KP, Feldman MD. Excretion and toxicity of gold-iron nanoparticles. Nanomedicine 2013;9:356-65. [PMID: 22960192 DOI: 10.1016/j.nano.2012.08.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
490 Briley-saebo KC, Mulder WJ, Mani V, Hyafil F, Amirbekian V, Aguinaldo JGS, Fisher EA, Fayad ZA. Magnetic resonance imaging of vulnerable atherosclerotic plaques: Current imaging strategies and molecular imaging probes. J Magn Reson Imaging 2007;26:460-79. [DOI: 10.1002/jmri.20989] [Cited by in Crossref: 111] [Cited by in F6Publishing: 90] [Article Influence: 7.4] [Reference Citation Analysis]
491 Bhave T, Ghoderao P, Sanghavi S, Babrekar H, Bhoraskar SV, Ganesan V, Kulkarni A. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria. Adv Nat Sci: Nanosci Nanotechnol 2013;4:045015. [DOI: 10.1088/2043-6262/4/4/045015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
492 Plank C, Anton M, Rudolph C, Rosenecker J, Krötz F. Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin Biol Ther 2003;3:745-58. [PMID: 12880375 DOI: 10.1517/14712598.3.5.745] [Cited by in Crossref: 83] [Cited by in F6Publishing: 66] [Article Influence: 4.6] [Reference Citation Analysis]
493 [DOI: 10.1101/2020.06.02.128587] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
494 Mbakidi J, Brégier F, Ouk T, Granet R, Alves S, Rivière E, Chevreux S, Lemercier G, Sol V. Magnetic Dextran Nanoparticles That Bear Hydrophilic Porphyrin Derivatives: Bimodal Agents for Potential Application in Photodynamic Therapy. ChemPlusChem 2015;80:1416-26. [DOI: 10.1002/cplu.201500087] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
495 Fleige G, Seeberger F, Laux D, Kresse M, Taupitz M, Pilgrimm H, Zimmer C. In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol 2002;37:482-8. [PMID: 12218443 DOI: 10.1097/00004424-200209000-00002] [Cited by in Crossref: 81] [Cited by in F6Publishing: 74] [Article Influence: 4.1] [Reference Citation Analysis]
496 Sun J, Teng G, Ju S, Ma Z, Mai X, Ma M. MR Tracking of Magnetically Labeled Mesenchymal Stem Cells in Rat Kidneys with Acute Renal Failure. Cell Transplant 2008;17:279-90. [DOI: 10.3727/096368908784153878] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 2.5] [Reference Citation Analysis]
497 Huang C, Liao Z, Lu H, Pan W, Wan W, Chen C, Sung H. Cellular Organelle-Dependent Cytotoxicity of Iron Oxide Nanoparticles and Its Implications for Cancer Diagnosis and Treatment: A Mechanistic Investigation. Chem Mater 2016;28:9017-25. [DOI: 10.1021/acs.chemmater.6b03905] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
498 Pouliquen D, Le Jeune JJ, Perdrisot R, Ermias A, Jallet P. Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Magn Reson Imaging. 1991;9:275-283. [PMID: 1881245 DOI: 10.1016/0730-725X(91)90412-F] [Cited by in Crossref: 156] [Cited by in F6Publishing: 49] [Article Influence: 5.0] [Reference Citation Analysis]
499 Hossaini Nasr S, Tonson A, El-Dakdouki MH, Zhu DC, Agnew D, Wiseman R, Qian C, Huang X. Effects of Nanoprobe Morphology on Cellular Binding and Inflammatory Responses: Hyaluronan-Conjugated Magnetic Nanoworms for Magnetic Resonance Imaging of Atherosclerotic Plaques. ACS Appl Mater Interfaces 2018;10:11495-507. [PMID: 29558108 DOI: 10.1021/acsami.7b19708] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
500 Suto Y, Kodama F. Usefulness of iron colloid-enhanced MRI in differentiating experimental hepatocellular carcinoma from hyperplastic nodules in rats: analysis by microautoradiography. Br J Radiol 1996;69:1139-44. [PMID: 9135470 DOI: 10.1259/0007-1285-69-828-1139] [Reference Citation Analysis]
501 Karimi A, Denizot B, Passirani C, Hindré F, Roux J, Legras P, Le Jeune J. In vitro and in vivo evaluation of superparamagnetic iron oxide nanoparticles coated by bisphosphonates: The effects of electrical charge and molecule length. European Journal of Pharmaceutical Sciences 2013;49:101-8. [DOI: 10.1016/j.ejps.2013.02.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
502 Jensen J, Chandra R. Theory of nonexponential NMR signal decay in liver with iron overload or superparamagnetic iron oxide particles. Magn Reson Med 2002;47:1131-8. [DOI: 10.1002/mrm.10170] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 2.4] [Reference Citation Analysis]
503 Powell C, Fenwick N, Bresme F, Quirke N. Wetting of nanoparticles and nanoparticle arrays. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002;206:241-51. [DOI: 10.1016/s0927-7757(02)00079-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 1] [Article Influence: 1.6] [Reference Citation Analysis]
504 Zhuang L, Kong Y, Yang S, Lu F, Gong Z, Zhan S, Liu M. Dynamic changes of inflammation and apoptosis in cerebral ischemia‑reperfusion injury in mice investigated by ferumoxytol‑enhanced magnetic resonance imaging. Mol Med Rep 2021;23:282. [PMID: 33604682 DOI: 10.3892/mmr.2021.11921] [Reference Citation Analysis]
505 Valdiglesias V, Kiliç G, Costa C, Fernández-Bertólez N, Pásaro E, Teixeira JP, Laffon B. Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ Mol Mutagen 2015;56:125-48. [PMID: 25209650 DOI: 10.1002/em.21909] [Cited by in Crossref: 87] [Cited by in F6Publishing: 73] [Article Influence: 10.9] [Reference Citation Analysis]
506 Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, Chen O, Chen Y, Li N, Okada S, Cordero JM, Heine M, Farrar CT, Montana DM, Adam G, Ittrich H, Jasanoff A, Nielsen P, Bawendi MG. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci U S A 2017;114:2325-30. [PMID: 28193901 DOI: 10.1073/pnas.1620145114] [Cited by in Crossref: 212] [Cited by in F6Publishing: 175] [Article Influence: 42.4] [Reference Citation Analysis]
507 Shi D, Sadat ME, Dunn AW, Mast DB. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 2015;7:8209-32. [PMID: 25899408 DOI: 10.1039/c5nr01538c] [Cited by in Crossref: 123] [Cited by in F6Publishing: 27] [Article Influence: 20.5] [Reference Citation Analysis]
508 Mykhaylyk O, Antequera YS, Vlaskou D, Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2007;2:2391-411. [PMID: 17947981 DOI: 10.1038/nprot.2007.352] [Cited by in Crossref: 215] [Cited by in F6Publishing: 195] [Article Influence: 15.4] [Reference Citation Analysis]
509 Daldrup-Link HE, Rudelius M, Oostendorp RA, Jacobs VR, Simon GH, Gooding C, Rummeny EJ. Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 2005;12:502-10. [PMID: 15831425 DOI: 10.1016/j.acra.2004.12.021] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 2.1] [Reference Citation Analysis]
510 Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019;119:957-1057. [PMID: 30350585 DOI: 10.1021/acs.chemrev.8b00363] [Cited by in Crossref: 389] [Cited by in F6Publishing: 302] [Article Influence: 97.3] [Reference Citation Analysis]
511 Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 2015;7:11142-54. [PMID: 26059262 DOI: 10.1039/c5nr01651g] [Cited by in Crossref: 170] [Cited by in F6Publishing: 43] [Article Influence: 28.3] [Reference Citation Analysis]
512 Lunov O, Syrovets T, Büchele B, Jiang X, Röcker C, Tron K, Nienhaus GU, Walther P, Mailänder V, Landfester K, Simmet T. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 2010;31:5063-71. [DOI: 10.1016/j.biomaterials.2010.03.023] [Cited by in Crossref: 117] [Cited by in F6Publishing: 114] [Article Influence: 9.8] [Reference Citation Analysis]
513 Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta (BBA) - General Subjects 2011;1810:361-73. [DOI: 10.1016/j.bbagen.2010.04.007] [Cited by in Crossref: 322] [Cited by in F6Publishing: 279] [Article Influence: 29.3] [Reference Citation Analysis]
514 Neuwelt EA, Weissleder R, Nilaver G, Kroll RA, Roman-goldstein S, Szumowski J, Pagel MA, Jones RS, Remsen LG, Mccormick CI, Shannon EM, Muldoon LL. Delivery of Virus-sized Iron Oxide Particles to Rodent CNS Neurons. Neurosurgery 1994;34:777-84. [DOI: 10.1097/00006123-199404000-00048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
515 Sun Y, Kim HS, Park J, Li M, Tian L, Choi Y, Choi BI, Jon S, Moon WK. MRI of breast tumor initiating cells using the extra domain-B of fibronectin targeting nanoparticles. Theranostics 2014;4:845-57. [PMID: 24955145 DOI: 10.7150/thno.8343] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
516 Chouly C, Bordenave L, Bareille R, Guerin V, Baquey A, Pouliquen D, Baquey C, Jallet P. In vitro study of the hemocompatibility of superparamagnetic contrast agent for magnetic resonance imaging. Clin Mater 1994;15:293-301. [PMID: 10147174 DOI: 10.1016/0267-6605(94)90061-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 0.8] [Reference Citation Analysis]
517 Totsuka Y, Ishino K, Kato T, Goto S, Tada Y, Nakae D, Watanabe M, Wakabayashi K. Magnetite Nanoparticles Induce Genotoxicity in the Lungs of Mice via Inflammatory Response. Nanomaterials (Basel) 2014;4:175-88. [PMID: 28348291 DOI: 10.3390/nano4010175] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
518 Jasmin, Torres AL, Nunes HM, Passipieri JA, Jelicks LA, Gasparetto EL, Spray DC, Campos de Carvalho AC, Mendez-Otero R. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. J Nanobiotechnology 2011;9:4. [PMID: 21542946 DOI: 10.1186/1477-3155-9-4] [Cited by in Crossref: 56] [Cited by in F6Publishing: 64] [Article Influence: 5.1] [Reference Citation Analysis]
519 Ebert SN, Taylor DG, Nguyen HL, Kodack DP, Beyers RJ, Xu Y, Yang Z, French BA. Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells 2007;25:2936-44. [PMID: 17690182 DOI: 10.1634/stemcells.2007-0216] [Cited by in Crossref: 61] [Cited by in F6Publishing: 59] [Article Influence: 4.1] [Reference Citation Analysis]
520 Liang G, Han J, Hao Q. Gram-Scale Preparation of Iron Oxide Nanoparticles with Renal Clearance Properties for Enhanced T1 -Weighted Magnetic Resonance Imaging. ACS Appl Bio Mater 2018;1:1389-97. [DOI: 10.1021/acsabm.8b00346] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
521 Andón FT, Fadeel B. Nanotoxicology: Towards Safety by Design. In: Alonso MJ, Garcia-fuentes M, editors. Nano-Oncologicals. Cham: Springer International Publishing; 2014. pp. 391-424. [DOI: 10.1007/978-3-319-08084-0_14] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
522 Furuta T, Yamaguchi M, Minami M, Ohtomo K, Fujii H. Persistent T2*-hypointensity of the liver parenchyma after irradiation to the SPIO-accumulated liver: An imaging marker for responses to radiotherapy in hepatic malignancies. J Magn Reson Imaging 2017;45:303-12. [PMID: 27373786 DOI: 10.1002/jmri.25350] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
523 Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg 2016;3:55. [PMID: 27800481 DOI: 10.3389/fsurg.2016.00055] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 10.5] [Reference Citation Analysis]
524 Puppi J, Mitry RR, Modo M, Dhawan A, Raja K, Hughes RD. Use of a clinically approved iron oxide MRI contrast agent to label human hepatocytes. Cell Transplant 2011;20:963-75. [PMID: 21092412 DOI: 10.3727/096368910X543367] [Cited by in Crossref: 34] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
525 Sathya K, Saravanathamizhan R, Baskar G. Ultrasonic assisted green synthesis of Fe and Fe/Zn bimetallic nanoparticles for invitro cytotoxicity study against HeLa cancer cell line. Mol Biol Rep 2018;45:1397-404. [PMID: 30128625 DOI: 10.1007/s11033-018-4302-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
526 Nosrati S, Shanehsazzadeh S, Yousefnia H, Gholami A, Grüttner C, Jalilian AR, Hosseini RH, Lahooti A. Biodistribution evaluation of 166Ho–DTPA–SPION in normal rats. J Radioanal Nucl Chem 2016;307:1559-66. [DOI: 10.1007/s10967-015-4251-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
527 Kamitakahara M, Ohtoshi N, Kawashita M, Ioku K. Spherical porous hydroxyapatite granules containing composites of magnetic and hydroxyapatite nanoparticles for the hyperthermia treatment of bone tumor. J Mater Sci: Mater Med 2016;27. [DOI: 10.1007/s10856-016-5704-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
528 Saeed M, Iqbal MZ, Ren W, Xia Y, Liu C, Khan WS, Wu A. Controllable synthesis of Fe3O4 nanoflowers: enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO2. J Mater Chem B 2018;6:3800-10. [PMID: 32254842 DOI: 10.1039/c8tb00745d] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
529 Hardy PA, Bronskill MJ, Belanger M, Henkelman RM. Use of magnetic particles for sensitizing MR images to blood flow. J Magn Reson Imaging 1991;1:431-40. [DOI: 10.1002/jmri.1880010407] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.2] [Reference Citation Analysis]
530 Li YF, Chen C. Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 2011;7:2965-80. [PMID: 21932238 DOI: 10.1002/smll.201101059] [Cited by in Crossref: 160] [Cited by in F6Publishing: 139] [Article Influence: 14.5] [Reference Citation Analysis]
531 Rümenapp C, Gleich B, Haase A. Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm Res. 2012;29:1165-1179. [PMID: 22392330 DOI: 10.1007/s11095-012-0711-y] [Cited by in Crossref: 103] [Cited by in F6Publishing: 91] [Article Influence: 10.3] [Reference Citation Analysis]
532 Anastasova EI, Prilepskii AY, Fakhardo AF, Drozdov AS, Vinogradov VV. Magnetite Nanocontainers: Toward Injectable Highly Magnetic Materials for Targeted Drug Delivery. ACS Appl Mater Interfaces 2018;10:30040-4. [PMID: 30137958 DOI: 10.1021/acsami.8b10129] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
533 Pardo A, Gómez-Florit M, Barbosa S, Taboada P, Domingues RMA, Gomes ME. Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS Nano 2021;15:175-209. [PMID: 33406360 DOI: 10.1021/acsnano.0c08253] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
534 do Nascimento T, Tavares M, Monteiro MSSB, Santos-Oliveira R, Todeschini AR, de Souza VT, Ricci-Júnior E. Trends in Nanotechnology for in vivo Cancer Diagnosis: Products and Patents. Curr Pharm Des 2020;26:2167-81. [PMID: 32072890 DOI: 10.2174/1381612826666200219094853] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
535 Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases. J Hepatol 2020;73:1241-54. [PMID: 32585160 DOI: 10.1016/j.jhep.2020.06.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
536 Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, Blower PJ, Green MA, de Rosales RT. Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 2013;7:500-12. [PMID: 23194247 DOI: 10.1021/nn3046055] [Cited by in Crossref: 196] [Cited by in F6Publishing: 174] [Article Influence: 19.6] [Reference Citation Analysis]
537 Kato N, Ihara S, Tsujimoto T, Miyazawa T. Effect of Resovist on Rats With Different Severities of Liver Cirrhosis: . Investigative Radiology 2002;37:292-8. [DOI: 10.1097/00004424-200205000-00007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
538 Lee H, Shin TH, Cheon J, Weissleder R. Recent Developments in Magnetic Diagnostic Systems. Chem Rev 2015;115:10690-724. [PMID: 26258867 DOI: 10.1021/cr500698d] [Cited by in Crossref: 173] [Cited by in F6Publishing: 135] [Article Influence: 24.7] [Reference Citation Analysis]
539 Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, Aikawa M. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation 2010;122:1707-15. [PMID: 20937980 DOI: 10.1161/CIRCULATIONAHA.109.891804] [Cited by in Crossref: 116] [Cited by in F6Publishing: 46] [Article Influence: 9.7] [Reference Citation Analysis]
540 Chen Y, Zhou Q, Li X, Wang F, Heist K, Kuick R, Owens SR, Wang TD. Ultrasmall Paramagnetic Iron Oxide Nanoprobe Targeting Epidermal Growth Factor Receptor for In Vivo Magnetic Resonance Imaging of Hepatocellular Carcinoma. Bioconjugate Chem 2017;28:2794-803. [DOI: 10.1021/acs.bioconjchem.7b00501] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
541 Matson ML, Wilson LJ. Nanotechnology and MRI contrast enhancement. Future Medicinal Chemistry 2010;2:491-502. [DOI: 10.4155/fmc.10.3] [Cited by in Crossref: 63] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
542 Yang J, Lim E, Lee E, Suh J, Haam S, Huh Y. Magnetoplex based on MnFe2O4 nanocrystals for magnetic labeling and MR imaging of human mesenchymal stem cells. J Nanopart Res 2010;12:1275-83. [DOI: 10.1007/s11051-009-9837-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
543 Wagner S, Schnorr J, Pilgrimm H, Hamm B, Taupitz M. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol 2002;37:167-77. [PMID: 11923639 DOI: 10.1097/00004424-200204000-00002] [Cited by in Crossref: 111] [Cited by in F6Publishing: 98] [Article Influence: 5.6] [Reference Citation Analysis]
544 Schmidt AM. Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles. Macromol Rapid Commun 2006;27:1168-72. [DOI: 10.1002/marc.200600225] [Cited by in Crossref: 367] [Cited by in F6Publishing: 222] [Article Influence: 22.9] [Reference Citation Analysis]
545 Zhang Q, Wang C, Qiao L, Yan H, Liu K. Superparamagnetic iron oxide nanoparticles coated with a folate-conjugated polymer. J Mater Chem 2009;19:8393. [DOI: 10.1039/b910439a] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
546 Häfeli UO, Pauer GJ. In vitro and in vivo toxicity of magnetic microspheres. Journal of Magnetism and Magnetic Materials 1999;194:76-82. [DOI: 10.1016/s0304-8853(98)00560-5] [Cited by in Crossref: 110] [Article Influence: 4.8] [Reference Citation Analysis]
547 Yu C, Ding B, Zhang X, Deng X, Deng K, Cheng Z, Xing B, Jin D, Ma P, Lin J. Targeted iron nanoparticles with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance in vitro and in vivo. Biomaterials 2018;155:112-23. [PMID: 29175080 DOI: 10.1016/j.biomaterials.2017.11.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
548 Ke YQ, Hu CC, Jiang XD, Yang ZJ, Zhang HW, Ji HM, Zhou LY, Cai YQ, Qin LS, Xu RX. In vivo magnetic resonance tracking of Feridex-labeled bone marrow-derived neural stem cells after autologous transplantation in rhesus monkey. J Neurosci Methods 2009;179:45-50. [PMID: 19428510 DOI: 10.1016/j.jneumeth.2009.01.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 1.2] [Reference Citation Analysis]
549 Gil PR, del Mercato LL, del_Pino P, Muñoz_javier A, Parak WJ. Nanoparticle-modified polyelectrolyte capsules. Nano Today 2008;3:12-21. [DOI: 10.1016/s1748-0132(08)70040-9] [Cited by in Crossref: 83] [Article Influence: 5.9] [Reference Citation Analysis]
550 Zhang Y, Zhang B, Liu F, Luo J, Bai J. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. Int J Nanomedicine 2014;9:33-41. [PMID: 24368885 DOI: 10.2147/IJN.S52492] [Cited by in Crossref: 11] [Cited by in F6Publishing: 19] [Article Influence: 1.2] [Reference Citation Analysis]
551 Aisida SO, Akpa PA, Ahmad I, Zhao T, Maaza M, Ezema FI. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. European Polymer Journal 2020;122:109371. [DOI: 10.1016/j.eurpolymj.2019.109371] [Cited by in Crossref: 41] [Cited by in F6Publishing: 8] [Article Influence: 20.5] [Reference Citation Analysis]
552 Wei W, Ehlerding EB, Lan X, Luo QY, Cai W. Molecular imaging of β-cells: diabetes and beyond. Adv Drug Deliv Rev 2019;139:16-31. [PMID: 31378283 DOI: 10.1016/j.addr.2018.06.022] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
553 Tran TH, Tran TTP, Nguyen HT, Phung CD, Jeong JH, Stenzel MH, Jin SG, Yong CS, Truong DH, Kim JO. Nanoparticles for dendritic cell-based immunotherapy. Int J Pharm 2018;542:253-65. [PMID: 29555438 DOI: 10.1016/j.ijpharm.2018.03.029] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
554 Soukup D, Moise S, Céspedes E, Dobson J, Telling ND. In Situ Measurement of Magnetization Relaxation of Internalized Nanoparticles in Live Cells. ACS Nano 2015;9:231-40. [DOI: 10.1021/nn503888j] [Cited by in Crossref: 93] [Cited by in F6Publishing: 60] [Article Influence: 13.3] [Reference Citation Analysis]
555 Petersein J, Saini S, Weissleder R. LIVER II: IRON OXIDE-BASED RETICULOENDOTHELIAL CONTRAST AGENTS FOR MR IMAGING. Magnetic Resonance Imaging Clinics of North America 1996;4:53-60. [DOI: 10.1016/s1064-9689(21)00553-5] [Cited by in Crossref: 18] [Article Influence: 0.7] [Reference Citation Analysis]
556 Tong S, Cradick TJ, Ma Y, Dai Z, Bao G. Engineering imaging probes and molecular machines for nanomedicine. Sci China Life Sci 2012;55:843-61. [DOI: 10.1007/s11427-012-4380-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
557 Lueshen E, Venugopal I, Kanikunnel J, Soni T, Alaraj A, Linninger A. Intrathecal magnetic drug targeting using gold-coated magnetite nanoparticles in a human spine model. Nanomedicine (Lond) 2014;9:1155-69. [PMID: 23862614 DOI: 10.2217/nnm.13.69] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
558 Maksoudian C, Saffarzadeh N, Hesemans E, Dekoning N, Buttiens K, Soenen SJ. Role of inorganic nanoparticle degradation in cancer therapy. Nanoscale Adv 2020;2:3734-63. [DOI: 10.1039/d0na00286k] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
559 Pech M, Ricke J, Seidensticker M, Staskiewicz G, Wieners G, Mohnike K, Ruhl R, Steinberg J, Wust P, Seidensticker P. Assessment of the tolerance dose of the hepatic reticulo-endothelial system (RES) after single fraction HDR-irradiation: an in-vivo study employing SSPIO. Int J Radiat Biol 2008;84:830-7. [PMID: 18979318 DOI: 10.1080/09553000802389660] [Reference Citation Analysis]
560 Shevtsov M, Kaesler S, Posch C, Multhoff G, Biedermann T. Magnetic nanoparticles in theranostics of malignant melanoma. EJNMMI Res 2021;11:127. [PMID: 34905138 DOI: 10.1186/s13550-021-00868-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
561 Sincai M, Ganga D, Ganga M, Argherie D, Bica D. Antitumor effect of magnetite nanoparticles in cat mammary adenocarcinoma. Journal of Magnetism and Magnetic Materials 2005;293:438-41. [DOI: 10.1016/j.jmmm.2005.02.074] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
562 Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 2011;155:344-357. [PMID: 21723891 DOI: 10.1016/j.jconrel.2011.06.004] [Cited by in Crossref: 347] [Cited by in F6Publishing: 281] [Article Influence: 31.5] [Reference Citation Analysis]
563 Gillich T, Acikgöz C, Isa L, Schlüter AD, Spencer ND, Textor M. PEG-Stabilized Core–Shell Nanoparticles: Impact of Linear versus Dendritic Polymer Shell Architecture on Colloidal Properties and the Reversibility of Temperature-Induced Aggregation. ACS Nano 2013;7:316-29. [DOI: 10.1021/nn304045q] [Cited by in Crossref: 145] [Cited by in F6Publishing: 115] [Article Influence: 14.5] [Reference Citation Analysis]
564 Yoo RE, Choi SH, Cho HR, Jeon BS, Kwon E, Kim EG, Park J, Myeong WJ, Won JK, Lee YS, Kim JH, Park SW, Sohn CH. Magnetic resonance imaging diagnosis of metastatic lymph nodes in a rabbit model: efficacy of PJY10, a new ultrasmall superparamagnetic iron oxide agent, with monodisperse iron oxide core and multiple-interaction ligands. PLoS One 2014;9:e107583. [PMID: 25216040 DOI: 10.1371/journal.pone.0107583] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
565 Sosnovik DE. Molecular imaging in cardiovascular magnetic resonance imaging: current perspective and future potential. Top Magn Reson Imaging 2008;19:59-68. [PMID: 18690161 DOI: 10.1097/RMR.0b013e318176c57b] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
566 Wu PC, Shieh DB, Hsiao HT, Wang JC, Lin YC, Liu YC. Magnetic field distribution modulation of intrathecal delivered ketorolac iron-oxide nanoparticle conjugates produce excellent analgesia for chronic inflammatory pain. J Nanobiotechnology 2018;16:49. [PMID: 29769077 DOI: 10.1186/s12951-018-0375-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
567 Raabe N, Forberich E, Freund B, Bruns OT, Heine M, Kaul MG, Tromsdorf U, Herich L, Nielsen P, Reimer R, Hohenberg H, Weller H, Schumacher U, Adam G, Ittrich H. Determination of liver-specific r2 * of a highly monodisperse USPIO by (59) Fe iron core-labeling in mice at 3 T MRI. Contrast Media Mol Imaging 2015;10:153-62. [PMID: 25078884 DOI: 10.1002/cmmi.1612] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
568 Manescu Paltanea V, Paltanea G, Antoniac I, Vasilescu M. Magnetic Nanoparticles Used in Oncology. Materials (Basel) 2021;14:5948. [PMID: 34683540 DOI: 10.3390/ma14205948] [Reference Citation Analysis]
569 Ferguson RM, Khandhar AP, Arami H, Hua L, Hovorka O, Krishnan KM. Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers. Biomed Tech (Berl) 2013;58:493-507. [PMID: 23787461 DOI: 10.1515/bmt-2012-0058] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 4.5] [Reference Citation Analysis]
570 Lartigue L, Alloyeau D, Kolosnjaj-tabi J, Javed Y, Guardia P, Riedinger A, Péchoux C, Pellegrino T, Wilhelm C, Gazeau F. Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring. ACS Nano 2013;7:3939-52. [DOI: 10.1021/nn305719y] [Cited by in Crossref: 176] [Cited by in F6Publishing: 143] [Article Influence: 19.6] [Reference Citation Analysis]
571 Liu Y, Chen Z, Wang J. Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines. J Nanopart Res 2011;13:199-212. [DOI: 10.1007/s11051-010-0019-y] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
572 Saeed M, Ren W, Wu A. Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomater Sci 2018;6:708-25. [PMID: 29363682 DOI: 10.1039/c7bm00999b] [Cited by in Crossref: 66] [Cited by in F6Publishing: 13] [Article Influence: 16.5] [Reference Citation Analysis]
573 Madsen SJ, Gach HM, Hong SJ, Uzal FA, Peng Q, Hirschberg H. Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption. Lasers Surg Med 2013;45:524-32. [PMID: 24037939 DOI: 10.1002/lsm.22172] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
574 Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, Toprak MS, Buerki-Thurnherr T, Laurent S, Vahter M, Krug H, Muhammed M, Scheynius A, Fadeel B. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol 2011;253:81-93. [PMID: 21435349 DOI: 10.1016/j.taap.2011.03.011] [Cited by in Crossref: 123] [Cited by in F6Publishing: 101] [Article Influence: 11.2] [Reference Citation Analysis]
575 Schulze F, Gramoun A, Crowe LA, Dienelt A, Akcan T, Hofmann H, Vallée J, Duda GN, Ode A. Accumulation of amino-polyvinyl alcohol-coated superparamagnetic iron oxide nanoparticles in bone marrow: implications for local stromal cells. Nanomedicine 2015;10:2139-51. [DOI: 10.2217/nnm.15.62] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
576 Wang J, de Keizer A, Fokkink R, Yan Y, Cohen Stuart MA, van der Gucht J. Complex Coacervate Core Micelles from Iron-Based Coordination Polymers. J Phys Chem B 2010;114:8313-9. [DOI: 10.1021/jp1003209] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
577 Chen L, Ge J, Huang B, Zhou D, Huang G, Zeng J, Gao M. Anchoring Group Mediated Radiolabeling for Achieving Robust Nanoimaging Probes. Small 2021;:e2104977. [PMID: 34651420 DOI: 10.1002/smll.202104977] [Reference Citation Analysis]
578 Alexiou C, Schmid R, Jurgons R, Bergemann C, Arnold W, Parak FG. Targeted Tumor Therapy with “Magnetic Drug Targeting”: Therapeutic Efficacy of Ferrofluid Bound Mitoxantrone. In: Odenbach S, editor. Ferrofluids. Berlin: Springer Berlin Heidelberg; 2002. pp. 233-51. [DOI: 10.1007/3-540-45646-5_12] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
579 Mishra SK, Kumar BS, Khushu S, Singh AK, Gangenahalli G. Early monitoring and quantitative evaluation of macrophage infiltration after experimental traumatic brain injury: A magnetic resonance imaging and flow cytometric analysis. Mol Cell Neurosci 2017;78:25-34. [PMID: 27864037 DOI: 10.1016/j.mcn.2016.11.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
580 Kedziorek DA, Muja N, Walczak P, Ruiz-Cabello J, Gilad AA, Jie CC, Bulte JW. Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn Reson Med 2010;63:1031-43. [PMID: 20373404 DOI: 10.1002/mrm.22290] [Cited by in Crossref: 76] [Cited by in F6Publishing: 69] [Article Influence: 6.3] [Reference Citation Analysis]
581 Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, Bey EA, Boothman DA, Gao J. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 2013;3:116-26. [PMID: 23423156 DOI: 10.7150/thno.5411] [Cited by in Crossref: 201] [Cited by in F6Publishing: 187] [Article Influence: 22.3] [Reference Citation Analysis]
582 Schultz JF, Bell JD, Goldstein RM, Kuhn JA, McCarty TM. Hepatic tumor imaging using iron oxide MRI: comparison with computed tomography, clinical impact, and cost analysis. Ann Surg Oncol 1999;6:691-8. [PMID: 10560856 DOI: 10.1007/pl00021736] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 0.3] [Reference Citation Analysis]
583 Gavilán H, Sánchez EH, Brollo MEF, Asín L, Moerner KK, Frandsen C, Lázaro FJ, Serna CJ, Veintemillas-Verdaguer S, Morales MP, Gutiérrez L. Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process. ACS Omega 2017;2:7172-84. [PMID: 31457296 DOI: 10.1021/acsomega.7b00975] [Cited by in Crossref: 43] [Cited by in F6Publishing: 19] [Article Influence: 8.6] [Reference Citation Analysis]
584 Yu M, Jeong Y, Park J, Park S, Kim J, Min J, Kim K, Jon S. Drug‐Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo. Angew Chem 2008;120:5442-5. [DOI: 10.1002/ange.200800857] [Cited by in Crossref: 53] [Cited by in F6Publishing: 39] [Article Influence: 3.8] [Reference Citation Analysis]
585 Stark DD, Fahlvik AK, Klaveness J. Abdominal imaging. J Magn Reson Imaging 1993;3:285-95. [DOI: 10.1002/jmri.1880030140] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
586 Chen J, Li L, Gao J. Biomaterials for local drug delivery in central nervous system. International Journal of Pharmaceutics 2019;560:92-100. [DOI: 10.1016/j.ijpharm.2019.01.071] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
587 Kawaguchi T, Hanaichi T, Hasegawa M, Maruno S. Dextran-magnetite complex: conformation of dextran chains and stability of solution. J Mater Sci Mater Med 2001;12:121-7. [PMID: 15348317 DOI: 10.1023/a:1008961709559] [Cited by in Crossref: 24] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
588 Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR, Ellenbogen RG, Zhang M. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release 2011;152:76-83. [PMID: 21277920 DOI: 10.1016/j.jconrel.2011.01.024] [Cited by in Crossref: 198] [Cited by in F6Publishing: 176] [Article Influence: 18.0] [Reference Citation Analysis]
589 Díaz E, Valle MB, Ribeiro S, Lanceros-Mendez S, Barandiarán JM. Development of Magnetically Active Scaffolds for Bone Regeneration. Nanomaterials (Basel) 2018;8:E678. [PMID: 30200267 DOI: 10.3390/nano8090678] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
590 Ba-Ssalamah A, Schima W, Schmook MT, Linnau KF, Schibany N, Helbich T, Reimer P, Laengle F, Wrba F, Kurtaran A, Ryan M, Mann FA. Atypical focal nodular hyperplasia of the liver: imaging features of nonspecific and liver-specific MR contrast agents. AJR Am J Roentgenol 2002;179:1447-56. [PMID: 12438034 DOI: 10.2214/ajr.179.6.1791447] [Cited by in Crossref: 55] [Cited by in F6Publishing: 41] [Article Influence: 2.8] [Reference Citation Analysis]
591 Peng B, Zhang X, Aarts DGAL, Dullens RPA. Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability. Nature Nanotech 2018;13:478-82. [DOI: 10.1038/s41565-018-0108-0] [Cited by in Crossref: 78] [Cited by in F6Publishing: 58] [Article Influence: 19.5] [Reference Citation Analysis]
592 Hsiao JK, Tai MF, Chu HH, Chen ST, Li H, Lai DM, Hsieh ST, Wang JL, Liu HM. Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn Reson Med 2007;58:717-24. [PMID: 17899592 DOI: 10.1002/mrm.21377] [Cited by in Crossref: 87] [Cited by in F6Publishing: 85] [Article Influence: 6.2] [Reference Citation Analysis]
593 Saritas EU, Goodwill PW, Croft LR, Konkle JJ, Lu K, Zheng B, Conolly SM. Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson 2013;229:116-26. [PMID: 23305842 DOI: 10.1016/j.jmr.2012.11.029] [Cited by in Crossref: 164] [Cited by in F6Publishing: 108] [Article Influence: 16.4] [Reference Citation Analysis]
594 Tay ZW, Chandrasekharan P, Zhou XY, Yu E, Zheng B, Conolly S. In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring. Theranostics 2018;8:3676-87. [PMID: 30026874 DOI: 10.7150/thno.26608] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 8.8] [Reference Citation Analysis]
595 Nagarkar AA, Kilbinger AFM. End functional ROMP polymers via degradation of a ruthenium Fischer type carbene. Chem Sci 2014;5:4687-92. [DOI: 10.1039/c4sc02242d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 2.4] [Reference Citation Analysis]
596 Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 2021;15:167-204. [PMID: 33216662 DOI: 10.1080/17435390.2020.1842934] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
597 Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine 2016;12:1663-701. [PMID: 27013135 DOI: 10.1016/j.nano.2016.02.019] [Cited by in Crossref: 159] [Cited by in F6Publishing: 125] [Article Influence: 26.5] [Reference Citation Analysis]
598 Gandhi S, Kamath SU, Sethuraman S, Krishnan UM. In vivo biodistribution and pathological manifestations of iron oxide incorporated mesoporous silica: implications on its biomedical applications. J Porous Mater 2017;24:751-8. [DOI: 10.1007/s10934-016-0312-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
599 Tweedle MF, Kumar K. Magnetic Resonance Imaging (MRI) Contrast Agents. In: Clarke MJ, Sadler PJ, editors. Metallopharmaceuticals II. Berlin: Springer Berlin Heidelberg; 1999. pp. 1-43. [DOI: 10.1007/978-3-642-60061-6_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
600 Bulte JW, Arbab AS, Douglas T, Frank JA. Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol. 2004;386:275-299. [PMID: 15120257 DOI: 10.1016/s0076-6879(04)86013-0] [Cited by in Crossref: 142] [Cited by in F6Publishing: 58] [Article Influence: 7.9] [Reference Citation Analysis]
601 Singh RK, Kim H. Inorganic nanobiomaterial drug carriers for medicine. Tissue Eng Regen Med 2013;10:296-309. [DOI: 10.1007/s13770-013-1092-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
602 Van de Walle A, Kolosnjaj-Tabi J, Lalatonne Y, Wilhelm C. Ever-Evolving Identity of Magnetic Nanoparticles within Human Cells: The Interplay of Endosomal Confinement, Degradation, Storage, and Neocrystallization. Acc Chem Res 2020;53:2212-24. [PMID: 32935974 DOI: 10.1021/acs.accounts.0c00355] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
603 Vaithilingam V, Yim MM, Foster JL, Stait-Gardner T, Oberholzer J, Tuch BE. Noninvasive Tracking of Encapsulated Insulin Producing Cells Labelled with Magnetic Microspheres by Magnetic Resonance Imaging. J Diabetes Res 2016;2016:6165893. [PMID: 27631014 DOI: 10.1155/2016/6165893] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
604 Maity D, Choo S, Yi J, Ding J, Xue JM. Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. Journal of Magnetism and Magnetic Materials 2009;321:1256-9. [DOI: 10.1016/j.jmmm.2008.11.013] [Cited by in Crossref: 92] [Cited by in F6Publishing: 60] [Article Influence: 7.1] [Reference Citation Analysis]
605 Matuszewski L, Tombach B, Heindel W, Bremer C. [Molecular and parametric imaging with iron oxides]. Radiologe 2007;47:34-42. [PMID: 17203322 DOI: 10.1007/s00117-006-1451-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
606 Park SM, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater 2017;2:17014. [PMID: 29876137 DOI: 10.1038/natrevmats.2017.14] [Cited by in Crossref: 142] [Cited by in F6Publishing: 132] [Article Influence: 28.4] [Reference Citation Analysis]
607 Hauger O, Delalande C, Trillaud H, Deminiere C, Quesson B, Kahn H, Cambar J, Combe C, Grenier N. MR imaging of intrarenal macrophage infiltration in an experimental model of nephrotic syndrome. Magn Reson Med 1999;41:156-62. [PMID: 10025624 DOI: 10.1002/(sici)1522-2594(199901)41:1<156::aid-mrm22>3.0.co;2-c] [Cited by in Crossref: 34] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
608 Janßen HC, Warwas DP, Dahlhaus D, Meißner J, Taptimthong P, Kietzmann M, Behrens P, Reifenrath J, Angrisani N. In vitro and in vivo accumulation of magnetic nanoporous silica nanoparticles on implant materials with different magnetic properties. J Nanobiotechnology 2018;16:96. [PMID: 30482189 DOI: 10.1186/s12951-018-0422-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
609 Kandasamy G, Surendran S, Chakrabarty A, Kale SN, Maity D. Facile synthesis of novel hydrophilic and carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles for biomedical applications. RSC Adv 2016;6:99948-59. [DOI: 10.1039/c6ra18567c] [Cited by in Crossref: 20] [Article Influence: 3.3] [Reference Citation Analysis]
610 Dissanayake NM, Current KM, Obare SO. Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells. Int J Mol Sci 2015;16:23482-516. [PMID: 26437397 DOI: 10.3390/ijms161023482] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 5.4] [Reference Citation Analysis]
611 Oh J, Feldman MD, Kim J, Kang HW, Sanghi P, Milner TE. Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography. Lasers Surg Med 2007;39:266-72. [PMID: 17295337 DOI: 10.1002/lsm.20473] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 1.9] [Reference Citation Analysis]
612 Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials 2020;228:119553. [PMID: 31689672 DOI: 10.1016/j.biomaterials.2019.119553] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 12.3] [Reference Citation Analysis]
613 Ma HL, Xu YF, Qi XR, Maitani Y, Nagai T. Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm. 2008;354:217-226. [PMID: 18191350 DOI: 10.1016/j.ijpharm.2007.11.036] [Cited by in Crossref: 83] [Cited by in F6Publishing: 68] [Article Influence: 5.5] [Reference Citation Analysis]
614 Castillo B, Bromberg L, López X, Badillo V, González Feliciano JA, González CI, Hatton TA, Barletta G. Intracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles. J Drug Deliv 2012;2012:218940. [PMID: 22970377 DOI: 10.1155/2012/218940] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
615 Visinescu D, Patrinoiu G, Tirsoaga A, Carp O. Polysaccharides Route: A New Green Strategy for Metal Oxides Synthesis. In: Lichtfouse E, Schwarzbauer J, Robert D, editors. Environmental Chemistry for a Sustainable World. Dordrecht: Springer Netherlands; 2012. pp. 119-69. [DOI: 10.1007/978-94-007-2442-6_5] [Cited by in Crossref: 10] [Article Influence: 0.9] [Reference Citation Analysis]
616 Mahan MM, Doiron AL. Gold Nanoparticles as X-Ray, CT, and Multimodal Imaging Contrast Agents: Formulation, Targeting, and Methodology. Journal of Nanomaterials 2018;2018:1-15. [DOI: 10.1155/2018/5837276] [Cited by in Crossref: 46] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
617 Prasad GL. Biomedical Applications of Nanoparticles. In: Webster TJ, editor. Safety of Nanoparticles. New York: Springer; 2009. pp. 89-109. [DOI: 10.1007/978-0-387-78608-7_5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
618 García I, Gallo J, Genicio N, Padro D, Penadés S. Magnetic glyconanoparticles as a versatile platform for selective immunolabeling and imaging of cells. Bioconjug Chem 2011;22:264-73. [PMID: 21247095 DOI: 10.1021/bc1003923] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 4.0] [Reference Citation Analysis]
619 Kelly KA, Nahrendorf M, Yu AM, Reynolds F, Weissleder R. In vivo phage display selection yields atherosclerotic plaque targeted peptides for imaging. Mol Imaging Biol. 2006;8:201-207. [PMID: 16791746 DOI: 10.1007/s11307-006-0043-6] [Cited by in Crossref: 102] [Cited by in F6Publishing: 90] [Article Influence: 6.4] [Reference Citation Analysis]
620 Geppert M, Himly M. Iron Oxide Nanoparticles in Bioimaging - An Immune Perspective. Front Immunol 2021;12:688927. [PMID: 34211476 DOI: 10.3389/fimmu.2021.688927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
621 Reimer P, Kwong KK, Weisskoff R, Cohen MS, Brady TJ, Weissleder R. Dynamic signal intensity changes in liver with superparamagnetic MR contrast agents. J Magn Reson Imaging 1992;2:177-81. [DOI: 10.1002/jmri.1880020210] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 0.8] [Reference Citation Analysis]
622 Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev 2012;64:1363-84. [PMID: 22917779 DOI: 10.1016/j.addr.2012.08.005] [Cited by in Crossref: 241] [Cited by in F6Publishing: 191] [Article Influence: 24.1] [Reference Citation Analysis]
623 Meledandri CJ, Ninjbadgar T, Brougham DF. Size-controlled magnetoliposomes with tunable magnetic resonance relaxation enhancements. J Mater Chem 2011;21:214-22. [DOI: 10.1039/c0jm01061h] [Cited by in Crossref: 22] [Article Influence: 2.0] [Reference Citation Analysis]
624 Gallo J, García I, Padro D, Arnáiz B, Penadés S. Water-soluble magnetic glyconanoparticles based on metal-doped ferrites coated with gold: Synthesis and characterization. J Mater Chem 2010;20:10010. [DOI: 10.1039/c0jm01756f] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
625 Yang H, Zhou H, Zhang C, Li X, Hu H, Wu H, Yang S. Water-soluble magnetic CoO nanocrystals functionalized with surfactants as T2-weighed MRI contrast agents in vitro. Dalton Trans 2011;40:3616. [DOI: 10.1039/c1dt10107b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
626 Runge VM, Heverhagen JT. Advocating the Development of Next-Generation High-Relaxivity Gadolinium Chelates for Clinical Magnetic Resonance. Invest Radiol 2018;53:381-9. [PMID: 29462023 DOI: 10.1097/RLI.0000000000000454] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 5.3] [Reference Citation Analysis]
627 Schultz JF, Bell JD, Goldstein RM, Kuhn JA, Mccarty TM. Hepatic Tumor Imaging Using Iron Oxide MRI: Comparison With Computed Tomography, Clinical Impact, and Cost Analysis. Ann Surg Oncol 1999;6:691-8. [DOI: 10.1007/s10434-999-0691-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 0.9] [Reference Citation Analysis]
628 Kim SH, Oh SN, Choi HS, Lee HS, Jun J, Nam Y, Lee SH, Lee JK, Lee HG. USPIO enhanced lymph node MRI using 3D multi-echo GRE in a rabbit model. Contrast Media Mol Imaging 2016;11:544-9. [PMID: 27976506 DOI: 10.1002/cmmi.1716] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
629 Kim MJ, Kim JH, Chung JJ, Park MS, Lim JS, Oh YT. Focal hepatic lesions: detection and characterization with combination gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology. 2003;228:719-726. [PMID: 12881583 DOI: 10.1148/radiol.2283020735] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 3.1] [Reference Citation Analysis]
630 Kim SK, Kim SH, Lee WJ, Kim H, Seo JW, Choi D, Lim HK, Lee SJ, Lim JH. Preoperative Detection of Hepatocellular Carcinoma: Ferumoxides-Enhanced Versus Mangafodipir Trisodium—Enhanced MR Imaging. American Journal of Roentgenology 2002;179:741-50. [DOI: 10.2214/ajr.179.3.1790741] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
631 Gong Y, Dai J, Li H, Wang X, Xiong H, Zhang Q, Li P, Yi C, Xu Z, Xu H, Chu PK. Magnetic, fluorescent, and thermo-responsive poly(MMA-NIPAM-Tb(AA)3Phen)/Fe3O4 multifunctional nanospheres prepared by emulsifier-free emulsion polymerization. J Biomater Appl 2015;30:201-11. [PMID: 25769301 DOI: 10.1177/0885328215575761] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
632 Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials 2005;293:483-96. [DOI: 10.1016/j.jmmm.2005.01.064] [Cited by in Crossref: 1232] [Cited by in F6Publishing: 821] [Article Influence: 72.5] [Reference Citation Analysis]
633 Plank C, Schillinger U, Scherer F, Bergemann C, Rémy JS, Krötz F, Anton M, Lausier J, Rosenecker J. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 2003;384:737-47. [PMID: 12817470 DOI: 10.1515/BC.2003.082] [Cited by in Crossref: 255] [Cited by in F6Publishing: 68] [Article Influence: 14.2] [Reference Citation Analysis]
634 Lutz AM, Willmann JK, Goepfert K, Marincek B, Weishaupt D. Hepatocellular carcinoma in cirrhosis: enhancement patterns at dynamic gadolinium- and superparamagnetic iron oxide-enhanced T1-weighted MR imaging. Radiology. 2005;237:520-528. [PMID: 16192317 DOI: 10.1148/radiol.2372041183] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 2.8] [Reference Citation Analysis]
635 Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2:3-44. [PMID: 22272217 DOI: 10.7150/thno.3463] [Cited by in Crossref: 521] [Cited by in F6Publishing: 463] [Article Influence: 52.1] [Reference Citation Analysis]
636 Barrefelt Å, Paradossi G, Asem H, Margheritelli S, Saghafian M, Oddo L, Muhammed M, Aspelin P, Hassan M, Brismar TB. DYNAMIC MR IMAGING, BIODISTRIBUTION AND PHARMACOKINETICS OF POLYMER SHELLED MICROBUBBLES CONTAINING SPION. NANO 2014;09:1450069. [DOI: 10.1142/s1793292014500696] [Cited by in Crossref: 4] [Article Influence: 0.5] [Reference Citation Analysis]
637 Perera VS, Yang LD, Hao J, Chen G, Erokwu BO, Flask CA, Zavalij PY, Basilion JP, Huang SD. Biocompatible nanoparticles of KGd(H₂O)₂[Fe(CN)₆]·H₂O with extremely high T₁-weighted relaxivity owing to two water molecules directly bound to the Gd(III) center. Langmuir 2014;30:12018-26. [PMID: 25238130 DOI: 10.1021/la501985p] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
638 Gamarra L, Pontuschka W, Amaro E, Costa-filho A, Brito G, Vieira E, Carneiro S, Escriba D, Falleiros A, Salvador V. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: An EPR and XRF study. Materials Science and Engineering: C 2008;28:519-25. [DOI: 10.1016/j.msec.2007.06.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
639 Mardhian DF, Storm G, Bansal R, Prakash J. Nano-targeted relaxin impairs fibrosis and tumor growth in pancreatic cancer and improves the efficacy of gemcitabine in vivo. J Control Release 2018;290:1-10. [PMID: 30287265 DOI: 10.1016/j.jconrel.2018.09.031] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 9.5] [Reference Citation Analysis]
640 Gandhi SN, Brown MA, Wong JG, Aguirre DA, Sirlin CB. MR contrast agents for liver imaging: what, when, how. Radiographics. 2006;26:1621-1636. [PMID: 17102040 DOI: 10.1148/rg.266065014] [Cited by in Crossref: 103] [Cited by in F6Publishing: 83] [Article Influence: 6.4] [Reference Citation Analysis]
641 Lutz AM, Seemayer C, Corot C, Gay RE, Goepfert K, Michel BA, Marincek B, Gay S, Weishaupt D. Detection of synovial macrophages in an experimental rabbit model of antigen-induced arthritis: ultrasmall superparamagnetic iron oxide-enhanced MR imaging. Radiology 2004;233:149-57. [PMID: 15333767 DOI: 10.1148/radiol.2331031402] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 3.3] [Reference Citation Analysis]
642 Ma YH, Chen SY, Tu SJ, Yang HW, Liu HL. Manipulation of magnetic nanoparticle retention and hemodynamic consequences in microcirculation: assessment by laser speckle imaging. Int J Nanomedicine 2012;7:2817-27. [PMID: 22745544 DOI: 10.2147/IJN.S31730] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
643 Armijo LM, Wawrzyniec SJ, Kopciuch M, Brandt YI, Rivera AC, Withers NJ, Cook NC, Huber DL, Monson TC, Smyth HDC, Osiński M. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnology 2020;18:35. [PMID: 32070354 DOI: 10.1186/s12951-020-0588-6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 12.5] [Reference Citation Analysis]
644 Ichihashi S, Marugami N, Tanaka T, Iwakoshi S, Kurumatani N, Kitano S, Nogi A, Kichikawa K. Preliminary experience with superparamagnetic iron oxide-enhanced dynamic magnetic resonance imaging and comparison with contrast-enhanced computed tomography in endoleak detection after endovascular aneurysm repair. Journal of Vascular Surgery 2013;58:66-72. [DOI: 10.1016/j.jvs.2012.12.061] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
645 Daldrup-link HE, Rudelius M, Oostendorp RAJ, Settles M, Piontek G, Metz S, Rosenbrock H, Keller U, Heinzmann U, Rummeny EJ, Schlegel J, Link TM. Targeting of Hematopoietic Progenitor Cells with MR Contrast Agents. Radiology 2003;228:760-7. [DOI: 10.1148/radiol.2283020322] [Cited by in Crossref: 155] [Cited by in F6Publishing: 151] [Article Influence: 8.2] [Reference Citation Analysis]
646 Kawaguchi T, Hasegawa M. Structure of dextran-magnetite complex: relation between conformation of dextran chains covering core and its molecular weight. J Mater Sci Mater Med 2000;11:31-5. [PMID: 15348096 DOI: 10.1023/a:1008933601813] [Cited by in Crossref: 26] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
647 Wei H, Tan T, Cheng L, Liu J, Song H, Li L, Zhang K. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 2020;22:3327-37. [PMID: 32945451 DOI: 10.3892/mmr.2020.11431] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
648 Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 2011;23:H217-47. [PMID: 21842473 DOI: 10.1002/adma.201102313] [Cited by in Crossref: 350] [Cited by in F6Publishing: 328] [Article Influence: 31.8] [Reference Citation Analysis]
649 Mantha VR, Nair HK, Venkataramanan R, Gao YY, Matyjaszewski K, Dong H, Li W, Landsittel D, Cohen E, Lariviere WR. Nanoanesthesia: a novel, intravenous approach to ankle block in the rat by magnet-directed concentration of ropivacaine-associated nanoparticles. Anesth Analg 2014;118:1355-62. [PMID: 24722259 DOI: 10.1213/ANE.0000000000000175] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
650 Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun X, Wang X, Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018;8:3284-307. [PMID: 29930730 DOI: 10.7150/thno.25220] [Cited by in Crossref: 121] [Cited by in F6Publishing: 89] [Article Influence: 30.3] [Reference Citation Analysis]
651 Babic M, Horák D, Trchová M, Jendelová P, Glogarová K, Lesný P, Herynek V, Hájek M, Syková E. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem. 2008;19:740-750. [PMID: 18288791 DOI: 10.1021/bc700410z] [Cited by in Crossref: 225] [Cited by in F6Publishing: 206] [Article Influence: 16.1] [Reference Citation Analysis]
652 Jeon M, Halbert MV, Stephen ZR, Zhang M. Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv Mater 2021;33:e1906539. [PMID: 32495404 DOI: 10.1002/adma.201906539] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
653 Morimoto N, Ebara M, Kato H, Obata T, Fujita J, Kondo F, Tsujii H, Saisho H. Early detection of radiation-induced liver injury in rat by superparamagnetic iron oxide-enhanced MR imaging. J Magn Reson Imaging 1999;9:573-8. [DOI: 10.1002/(sici)1522-2586(199904)9:4<573::aid-jmri11>3.0.co;2-c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
654 Wierzbinski KR, Szymanski T, Rozwadowska N, Rybka JD, Zimna A, Zalewski T, Nowicka-Bauer K, Malcher A, Nowaczyk M, Krupinski M, Fiedorowicz M, Bogorodzki P, Grieb P, Giersig M, Kurpisz MK. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Sci Rep 2018;8:3682. [PMID: 29487326 DOI: 10.1038/s41598-018-22018-0] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]
655 Campos F, Bonhome-Espinosa AB, Carmona R, Durán JDG, Kuzhir P, Alaminos M, López-López MT, Rodriguez IA, Carriel V. In vivo time-course biocompatibility assessment of biomagnetic nanoparticles-based biomaterials for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 2021;118:111476. [PMID: 33255055 DOI: 10.1016/j.msec.2020.111476] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
656 Wildgruber M, Lee H, Chudnovskiy A, Yoon TJ, Etzrodt M, Pittet MJ, Nahrendorf M, Croce K, Libby P, Weissleder R, Swirski FK. Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS One 2009;4:e5663. [PMID: 19461894 DOI: 10.1371/journal.pone.0005663] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 3.2] [Reference Citation Analysis]
657 Daou TJ, Pourroy G, Greneche JM, Bertin A, Felder-flesch D, Begin-colin S. Water soluble dendronized iron oxide nanoparticles. Dalton Trans 2009. [DOI: 10.1039/b823187g] [Cited by in Crossref: 79] [Cited by in F6Publishing: 62] [Article Influence: 6.1] [Reference Citation Analysis]
658 Weissleder R, Reimer P. Superparamegnetic iron oxides for MRI. Eur Radiol 1993;3:198-212. [DOI: 10.1007/bf00425895] [Cited by in Crossref: 13] [Article Influence: 0.4] [Reference Citation Analysis]
659 Chen T, Mori Y, Inui-Yamamoto C, Komai Y, Tago Y, Yoshida S, Takabatake Y, Isaka Y, Ohno K, Yoshioka Y. Polymer-brush-afforded SPIO Nanoparticles Show a Unique Biodistribution and MR Imaging Contrast in Mouse Organs. Magn Reson Med Sci 2017;16:275-83. [PMID: 28132997 DOI: 10.2463/mrms.mp.2016-0067] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
660 Yuan H, Wilks MQ, Normandin MD, El Fakhri G, Kaittanis C, Josephson L. Heat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry. Nat Protoc 2018;13:392-412. [PMID: 29370158 DOI: 10.1038/nprot.2017.133] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
661 Cheng W, Ping Y, Zhang Y, Chuang KH, Liu Y. Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis. J Healthc Eng 2013;4:23-45. [PMID: 23502248 DOI: 10.1260/2040-2295.4.1.23] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 3.7] [Reference Citation Analysis]
662 Easo SL, Neelima R, Mohanan PV. Toxicokinetics and biodistribution of dextran stabilized iron oxide nanoparticles in rats. Mater Res Express 2015;2:075401. [DOI: 10.1088/2053-1591/2/7/075401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
663 Poeckler–schoeniger C, Koepke J, Gueckel F, Sturm J, Georgi M. MRI with superparamagnetic iron oxide: efficacy in the detection and characterization of focal hepatic lesions. Magnetic Resonance Imaging 1999;17:383-92. [DOI: 10.1016/s0730-725x(98)00180-5] [Cited by in Crossref: 48] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
664 Kim SJ, Kim SH, Lee J, Chang S, Kim Y, Kim SH, Jeon YH, Choi D. Ferucarbotran-Enhanced 3.0-T Magnetic Resonance Imaging Using Parallel Imaging Technique Compared With Triple-Phase Multidetector Row Computed Tomography for the Preoperative Detection of Hepatocellular Carcinoma: . Journal of Computer Assisted Tomography 2008;32:379-85. [DOI: 10.1097/rct.0b013e3180de5c80] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
665 Purich K, Cai H, Yang B, Xu Z, Tessier AG, Black A, Hung RW, Boivin E, Xu B, Wu P, Zhang B, Xin D, Fallone BG, Rajotte RV, Wu Y, Rayat GR. MRI monitoring of transplanted neonatal porcine islets labeled with polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles in a mouse model. Xenotransplantation 2021. [PMID: 34850455 DOI: 10.1111/xen.12720] [Reference Citation Analysis]
666 Saito S, Tsugeno M, Koto D, Mori Y, Yoshioka Y, Nohara S, Murase K. Impact of surface coating and particle size on the uptake of small and ultrasmall superparamagnetic iron oxide nanoparticles by macrophages. Int J Nanomedicine 2012;7:5415-21. [PMID: 23091384 DOI: 10.2147/IJN.S33709] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 0.5] [Reference Citation Analysis]
667 Song L, Chen Y, Ding J, Wu H, Zhang W, Ma M, Zang F, Wang Z, Gu N, Zhang Y. Rituximab conjugated iron oxide nanoparticles for targeted imaging and enhanced treatment against CD20-positive lymphoma. J Mater Chem B 2020;8:895-907. [DOI: 10.1039/c9tb02521a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
668 Gonzales M, Mitsumori LM, Kushleika JV, Rosenfeld ME, Krishnan KM. Cytotoxicity of iron oxide nanoparticles made from the thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127. Contrast Media Mol Imaging 2010;5:286-93. [PMID: 20623517 DOI: 10.1002/cmmi.391] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
669 Chorny M, Fishbein I, Forbes S, Alferiev I. Magnetic nanoparticles for targeted vascular delivery. IUBMB Life 2011;63:613-20. [PMID: 21721100 DOI: 10.1002/iub.479] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
670 Maity D, Ding J, Xue J. SYNTHESIS OF MAGNETITE NANOPARTICLES BY THERMAL DECOMPOSITION: TIME, TEMPERATURE, SURFACTANT AND SOLVENT EFFECTS. Funct Mater Lett 2012;01:189-93. [DOI: 10.1142/s1793604708000381] [Cited by in Crossref: 34] [Cited by in F6Publishing: 1] [Article Influence: 3.4] [Reference Citation Analysis]
671 Kalita H, Karak N. Bio-based hyperbranched polyurethane/Fe 3 O 4 nanocomposites as shape memory materials: Fe 3 O 4 -BASED POLYURETHANE NANOCOMPOSITES AS SHAPE MEMORY MATERIALS. Polym Adv Technol 2013;24:819-23. [DOI: 10.1002/pat.3149] [Cited by in Crossref: 24] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
672 Tay CY, Setyawati MI, Xie J, Parak WJ, Leong DT. Back to Basics: Exploiting the Innate Physico-chemical Characteristics of Nanomaterials for Biomedical Applications. Adv Funct Mater 2014;24:5936-55. [DOI: 10.1002/adfm.201401664] [Cited by in Crossref: 177] [Cited by in F6Publishing: 135] [Article Influence: 22.1] [Reference Citation Analysis]
673 Tseng WK, Chieh JJ, Yang YF, Chiang CK, Chen YL, Yang SY, Horng HE, Yang HC, Wu CC. A noninvasive method to determine the fate of Fe(3)O(4) nanoparticles following intravenous injection using scanning SQUID biosusceptometry. PLoS One 2012;7:e48510. [PMID: 23152779 DOI: 10.1371/journal.pone.0048510] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
674 Cicchetti F, Gross RE, Bulte JW, Owen M, Chen I, Saint-Pierre M, Wang X, Yu M, Brownell AL. Dual-modality in vivo monitoring of subventricular zone stem cell migration and metabolism. Contrast Media Mol Imaging 2007;2:130-8. [PMID: 17583908 DOI: 10.1002/cmmi.138] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
675 Kut C, Zhang Y, Hedayati M, Zhou H, Cornejo C, Bordelon D, Mihalic J, Wabler M, Burghardt E, Gruettner C, Geyh A, Brayton C, Deweese TL, Ivkov R. Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice. Nanomedicine (Lond) 2012;7:1697-711. [PMID: 22830502 DOI: 10.2217/nnm.12.65] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 5.1] [Reference Citation Analysis]
676 Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JW, Frank JA. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation. 2003;76:1123-1130. [PMID: 14557764 DOI: 10.1097/01.tp.0000089237.39220.83] [Cited by in Crossref: 204] [Cited by in F6Publishing: 70] [Article Influence: 10.7] [Reference Citation Analysis]
677 Minaei SE, Khoei S, Khoee S, Vafashoar F, Mahabadi VP. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Materials Science and Engineering: C 2019;101:575-87. [DOI: 10.1016/j.msec.2019.04.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
678 Rodrigues HF, Capistrano G, Bakuzis AF. In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. Int J Hyperthermia 2020;37:76-99. [PMID: 33426989 DOI: 10.1080/02656736.2020.1800831] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
679 Licciardi M, Scialabba C, Fiorica C, Cavallaro G, Cassata G, Giammona G. Polymeric nanocarriers for magnetic targeted drug delivery: preparation, characterization, and in vitro and in vivo evaluation. Mol Pharm 2013;10:4397-407. [PMID: 24168360 DOI: 10.1021/mp300718b] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
680 Metz S, Lohr S, Settles M, Beer A, Woertler K, Rummeny EJ, Daldrup‒link HE. Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-Hodgkin lymphomas. Eur Radiol 2006;16:598-607. [DOI: 10.1007/s00330-005-0045-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
681 Sharkey J, Starkey Lewis PJ, Barrow M, Alwahsh SM, Noble J, Livingstone E, Lennen RJ, Jansen MA, Carrion JG, Liptrott N, Forbes S, Adams DJ, Chadwick AE, Forbes SJ, Murray P, Rosseinsky MJ, Goldring CE, Park BK. Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance-based detection in vivo. Cytotherapy 2017;19:555-69. [PMID: 28214127 DOI: 10.1016/j.jcyt.2017.01.003] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
682 Mariappan L, Shao Q, Jiang C, Yu K, Ashkenazi S, Bischof JC, He B. Magneto acoustic tomography with short pulsed magnetic field for in-vivo imaging of magnetic iron oxide nanoparticles. Nanomedicine 2016;12:689-99. [PMID: 26656627 DOI: 10.1016/j.nano.2015.10.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
683 Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL, Weissleder R. Perturbational profiling of nanomaterial biologic activity. Proc Natl Acad Sci U S A 2008;105:7387-92. [PMID: 18492802 DOI: 10.1073/pnas.0802878105] [Cited by in Crossref: 198] [Cited by in F6Publishing: 165] [Article Influence: 14.1] [Reference Citation Analysis]
684 Frenzel T, Lawaczeck R, Taupitz M, Jost G, Lohrke J, Sieber MA, Pietsch H. Contrast Media for X-ray and Magnetic Resonance Imaging: Development, Current Status and Future Perspectives. Investigative Radiology 2015;50:671-8. [DOI: 10.1097/rli.0000000000000193] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
685 Isa L, Amstad E, Schwenke K, Del Gado E, Ilg P, Kröger M, Reimhult E. Adsorption of core-shell nanoparticles at liquid–liquid interfaces. Soft Matter 2011;7:7663. [DOI: 10.1039/c1sm05407d] [Cited by in Crossref: 73] [Cited by in F6Publishing: 56] [Article Influence: 6.6] [Reference Citation Analysis]
686 Lunov O, Syrovets T, Röcker C, Tron K, Nienhaus GU, Rasche V, Mailänder V, Landfester K, Simmet T. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 2010;31:9015-22. [PMID: 20739059 DOI: 10.1016/j.biomaterials.2010.08.003] [Cited by in Crossref: 134] [Cited by in F6Publishing: 123] [Article Influence: 11.2] [Reference Citation Analysis]
687 Freund B, Tromsdorf UI, Bruns OT, Heine M, Giemsa A, Bartelt A, Salmen SC, Raabe N, Heeren J, Ittrich H, Reimer R, Hohenberg H, Schumacher U, Weller H, Nielsen P. A simple and widely applicable method to 59Fe-radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies. ACS Nano 2012;6:7318-25. [PMID: 22793497 DOI: 10.1021/nn3024267] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 6.2] [Reference Citation Analysis]
688 Reimer P, Allkemper T, Schuierer G, Peters PE. Brain Imaging: Reduced Sensitivity of RARE-Derived Techniques to Susceptibility Effects: . Journal of Computer Assisted Tomography 1996;20:201-5. [DOI: 10.1097/00004728-199603000-00006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 0.5] [Reference Citation Analysis]
689 Aoki I, Takahashi Y, Chuang K, Silva AC, Igarashi T, Tanaka C, Childs RW, Koretsky AP. Cell labeling for magnetic resonance imaging with theT1 agent manganese chloride. NMR Biomed 2006;19:50-9. [DOI: 10.1002/nbm.1000] [Cited by in Crossref: 63] [Cited by in F6Publishing: 63] [Article Influence: 3.9] [Reference Citation Analysis]
690 Tréhin R, Figueiredo JL, Pittet MJ, Weissleder R, Josephson L, Mahmood U. Fluorescent nanoparticle uptake for brain tumor visualization. Neoplasia 2006;8:302-11. [PMID: 16756722 DOI: 10.1593/neo.05751] [Cited by in Crossref: 70] [Cited by in F6Publishing: 59] [Article Influence: 4.4] [Reference Citation Analysis]
691 Winter TC, Freeny PC, Nghiem HV, Thomas CR. Utility of magnetization prepared GRE MRI for the detection of focal liver lesions. Magnetic Resonance Imaging 1994;12:733-42. [DOI: 10.1016/0730-725x(94)92198-9] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
692