BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Elfiky AA. Novel Guanosine Derivatives as Anti-HCV NS5b Polymerase: A QSAR and Molecular Docking Study. Med Chem 2019;15:130-7. [PMID: 30324891 DOI: 10.2174/1573406414666181015152511] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Elfiky AA. Novel guanosine derivatives against Zika virus polymerase in silico. J Med Virol 2020;92:11-6. [PMID: 31436327 DOI: 10.1002/jmv.25573] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
2 Elfiky AA, Azzam EB. Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective. J Biomol Struct Dyn 2021;39:2923-31. [PMID: 32306854 DOI: 10.1080/07391102.2020.1758789] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 12.5] [Reference Citation Analysis]
3 Ismail AM, Elfiky AA, Elshemey WM. Recognition of the gluconeogenic enzyme, Pck1, via the Gid4 E3 ligase: An in silico perspective. J Mol Recognit 2019;33. [DOI: 10.1002/jmr.2821] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
4 Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn 2020;:1-16. [PMID: 32720577 DOI: 10.1080/07391102.2020.1796810] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
5 Elfiky AA. Ebola virus glycoprotein GP1-host cell-surface HSPA5 binding site prediction. Cell Stress Chaperones 2020;25:541-8. [PMID: 32291698 DOI: 10.1007/s12192-020-01106-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
6 Indu P, Rameshkumar MR, Arunagirinathan N, Al-Dhabi NA, Valan Arasu M, Ignacimuthu S. Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine against main protease and RNA-dependent RNA polymerase of SARS-CoV-2: A molecular docking and drug repurposing approach. J Infect Public Health 2020;13:1856-61. [PMID: 33168456 DOI: 10.1016/j.jiph.2020.10.015] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
7 Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J Biomol Struct Dyn 2021;39:3204-12. [PMID: 32338164 DOI: 10.1080/07391102.2020.1761882] [Cited by in Crossref: 70] [Cited by in F6Publishing: 89] [Article Influence: 35.0] [Reference Citation Analysis]
8 Jukič M, Janežič D, Bren U. Potential Novel Thioether-Amide or Guanidine-Linker Class of SARS-CoV-2 Virus RNA-Dependent RNA Polymerase Inhibitors Identified by High-Throughput Virtual Screening Coupled to Free-Energy Calculations. Int J Mol Sci 2021;22:11143. [PMID: 34681802 DOI: 10.3390/ijms222011143] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Elfiky AA, Mahran HA, Ibrahim IM, Ibrahim MN, Elshemey WM. Molecular dynamics simulations and MM-GBSA reveal novel guanosine derivatives against SARS-CoV-2 RNA dependent RNA polymerase. RSC Adv 2022;12:2741-50. [DOI: 10.1039/d1ra07447d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020;248:117477. [PMID: 32119961 DOI: 10.1016/j.lfs.2020.117477] [Cited by in Crossref: 305] [Cited by in F6Publishing: 290] [Article Influence: 152.5] [Reference Citation Analysis]
11 Elfiky AA. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020;253:117592. [PMID: 32222463 DOI: 10.1016/j.lfs.2020.117592] [Cited by in Crossref: 371] [Cited by in F6Publishing: 342] [Article Influence: 185.5] [Reference Citation Analysis]
12 Abuo-rahma GEA, Mohamed MFA, Ibrahim TS, Shoman ME, Samir E, Abd El-baky RM. Potential repurposed SARS-CoV-2 (COVID-19) infection drugs. RSC Adv 2020;10:26895-916. [DOI: 10.1039/d0ra05821a] [Cited by in Crossref: 18] [Article Influence: 9.0] [Reference Citation Analysis]
13 Hu D, Tang Y, Wang C, Qi Y, Ente M, Li X, Zhang D, Li K, Chu H. The Role of Intestinal Microbial Metabolites in the Immunity of Equine Animals Infected With Horse Botflies. Front Vet Sci 2022;9:832062. [DOI: 10.3389/fvets.2022.832062] [Reference Citation Analysis]
14 Pandey K, Lokhande KB, Swamy KV, Nagar S, Dake M. In Silico Exploration of Phytoconstituents From Phyllanthus emblica and Aegle marmelos as Potential Therapeutics Against SARS-CoV-2 RdRp. Bioinform Biol Insights 2021;15:11779322211027403. [PMID: 34248355 DOI: 10.1177/11779322211027403] [Reference Citation Analysis]
15 Sonousi A, Mahran HA, Ibrahim IM, Ibrahim MN, Elfiky AA, Elshemey WM. Novel adenosine derivatives against SARS-CoV-2 RNA-dependent RNA polymerase: an in silico perspective. Pharmacol Rep 2021. [PMID: 34165771 DOI: 10.1007/s43440-021-00300-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Singh SK, Upadhyay AK, Reddy MS. Screening of potent drug inhibitors against SARS-CoV-2 RNA polymerase: an in silico approach. 3 Biotech 2021;11:93. [PMID: 33520579 DOI: 10.1007/s13205-020-02610-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
17 Ahmad Mir S, Firoz A, Alaidarous M, Alshehri B, Aziz Bin Dukhyil A, Banawas S, Alsagaby SA, Alturaiki W, Ahmad Bhat G, Kashoo F, Abdel-Hadi AM. Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi J Biol Sci 2021. [PMID: 34518755 DOI: 10.1016/j.sjbs.2021.09.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]