BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Goss T, Hanke G. The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons? Curr Protein Pept Sci 2014;15:385-93. [PMID: 24678667 DOI: 10.2174/1389203715666140327113733] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Mulo P, Medina M. Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: structural, functional, and physiological implications. Photosynth Res 2017;134:265-80. [PMID: 28361449 DOI: 10.1007/s11120-017-0372-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
2 Xue X, Wang Q, Qu Y, Wu H, Dong F, Cao H, Wang HL, Xiao J, Shen Y, Wan Y. Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness. New Phytol 2017;213:300-13. [PMID: 27401059 DOI: 10.1111/nph.14096] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
3 Finazzi G, Johnson GN. Cyclic electron flow: facts and hypotheses. Photosynth Res 2016;129:227-30. [PMID: 27623779 DOI: 10.1007/s11120-016-0306-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
4 Vojta L, Carić D, Cesar V, Antunović Dunić J, Lepeduš H, Kveder M, Fulgosi H. TROL-FNR interaction reveals alternative pathways of electron partitioning in photosynthesis. Sci Rep 2015;5:10085. [PMID: 26041075 DOI: 10.1038/srep10085] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
5 Mellor SB, Vavitsas K, Nielsen AZ, Jensen PE. Photosynthetic fuel for heterologous enzymes: the role of electron carrier proteins. Photosynth Res 2017;134:329-42. [DOI: 10.1007/s11120-017-0364-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
6 Mosebach L, Heilmann C, Mutoh R, Gäbelein P, Steinbeck J, Happe T, Ikegami T, Hanke G, Kurisu G, Hippler M. Association of Ferredoxin:NADP+ oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii. Photosynth Res 2017;134:291-306. [PMID: 28593495 DOI: 10.1007/s11120-017-0408-5] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 6.4] [Reference Citation Analysis]
7 Song Z, Wei C, Li C, Gao X, Mao S, Lu F, Qin H. Customized exogenous ferredoxin functions as an efficient electron carrier. Bioresour Bioprocess 2021;8. [DOI: 10.1186/s40643-021-00464-5] [Reference Citation Analysis]
8 Qu J, Shen L, Zhao M, Li W, Jia C, Zhu H, Zhang Q. Determination of the Role of Microcystis aeruginosa in Toxin Generation Based on Phosphoproteomic Profiles. Toxins (Basel) 2018;10:E304. [PMID: 30041444 DOI: 10.3390/toxins10070304] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
9 Vorphal MA, Bruna C, Wandersleben T, Dagnino-Leone J, Lobos-González F, Uribe E, Martínez-Oyanedel J, Bunster M. Molecular and functional characterization of ferredoxin NADP(H) oxidoreductase from Gracilaria chilensis and its complex with ferredoxin. Biol Res 2017;50:39. [PMID: 29221464 DOI: 10.1186/s40659-017-0144-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
10 Ishikawa N, Takabayashi A, Sato F, Endo T. Accumulation of the components of cyclic electron flow around photosystem I in C4 plants, with respect to the requirements for ATP. Photosynth Res 2016;129:261-77. [PMID: 27017612 DOI: 10.1007/s11120-016-0251-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
11 Turkan I, Uzilday B, Dietz K, Bräutigam A, Ozgur R. Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants. Journal of Experimental Botany 2018;69:3321-31. [DOI: 10.1093/jxb/ery064] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
12 Khanna N, Lindblad P. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci 2015;16:10537-61. [PMID: 26006225 DOI: 10.3390/ijms160510537] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
13 Changko S, Rajakumar PD, Young REB, Purton S. The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Appl Microbiol Biotechnol 2020;104:675-86. [PMID: 31788712 DOI: 10.1007/s00253-019-10258-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
14 Shinohara F, Kurisu G, Hanke G, Bowsher C, Hase T, Kimata-Ariga Y. Structural basis for the isotype-specific interactions of ferredoxin and ferredoxin: NADP+ oxidoreductase: an evolutionary switch between photosynthetic and heterotrophic assimilation. Photosynth Res 2017;134:281-9. [PMID: 28093652 DOI: 10.1007/s11120-016-0331-1] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
15 Kimata-Ariga Y, Yuasa S, Saitoh T, Fukuyama H, Hase T. Plasmodium-specific basic amino acid residues important for the interaction with ferredoxin on the surface of ferredoxin-NADP+ reductase. J Biochem 2018;164:231-7. [PMID: 29688515 DOI: 10.1093/jb/mvy045] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
16 Luu Trinh MD, Miyazaki D, Ono S, Nomata J, Kono M, Mino H, Niwa T, Okegawa Y, Motohashi K, Taguchi H, Hisabori T, Masuda S. The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I. iScience 2021;24:102059. [PMID: 33554065 DOI: 10.1016/j.isci.2021.102059] [Reference Citation Analysis]
17 Dudkina NV, Folea IM, Boekema EJ. Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes. Micron 2015;72:39-51. [PMID: 25841081 DOI: 10.1016/j.micron.2015.03.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
18 Motomura T, Zuccarello L, Sétif P, Boussac A, Umena Y, Lemaire D, Tripathy JN, Sugiura M, Hienerwadel R, Shen J, Berthomieu C. An alternative plant-like cyanobacterial ferredoxin with unprecedented structural and functional properties. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2019;1860:148084. [DOI: 10.1016/j.bbabio.2019.148084] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
19 Johnson MP. Metabolic regulation of photosynthetic membrane structure tunes electron transfer function. Biochemical Journal 2018;475:1225-33. [DOI: 10.1042/bcj20170526] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Li C, Hu Y, Huang R, Ma X, Wang Y, Liao T, Zhong P, Xiao F, Sun C, Xu Z, Deng X, Wang P. Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. Plant Science 2015;238:127-34. [DOI: 10.1016/j.plantsci.2015.06.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
21 Usuldin SRA, Al-obaidi JR, Razali N, Junit SM, Ajang MJ, Hussin SNIS, Hamid SS, Hanafi NM, Roni ANHM, Saleh NM. Molecular investigation of carrageenan production in Kappaphycus alvarezii in different culture conditions: a proteomic approach. J Appl Phycol 2017;29:1989-2001. [DOI: 10.1007/s10811-017-1119-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
22 Alboresi A, Storti M, Cendron L, Morosinotto T. Role and regulation of class-C flavodiiron proteins in photosynthetic organisms. Biochemical Journal 2019;476:2487-98. [DOI: 10.1042/bcj20180648] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
23 Zhao J, Qiu Z, Ruan B, Kang S, He L, Zhang S, Dong G, Hu J, Zeng D, Zhang G, Gao Z, Ren D, Hu X, Chen G, Guo L, Qian Q, Zhu L. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice. PLoS One 2015;10:e0143361. [PMID: 26598971 DOI: 10.1371/journal.pone.0143361] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
24 Ho M, Soulier NT, Canniffe DP, Shen G, Bryant DA. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Current Opinion in Plant Biology 2017;37:24-33. [DOI: 10.1016/j.pbi.2017.03.006] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
25 Kimata-ariga Y, Sakamoto A, Kamatani M, Saitoh T, Hase T. C-terminal aromatic residue of Plasmodium ferredoxin important for the interaction with ferredoxin: NADP(H) oxidoreductase: possible involvement for artemisinin resistance of human malaria parasites. The Journal of Biochemistry 2020;168:427-34. [DOI: 10.1093/jb/mvaa060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Vojta L, Fulgosi H. Topology of TROL protein in thylakoid membranes of Arabidopsis thaliana. Physiol Plant 2019;166:300-8. [PMID: 30663054 DOI: 10.1111/ppl.12927] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
27 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 2021;72:830-47. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
28 Schreiber U. Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynth Res 2017;134:343-60. [PMID: 28497192 DOI: 10.1007/s11120-017-0394-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 5.6] [Reference Citation Analysis]
29 Lundquist PK, Mantegazza O, Stefanski A, Stühler K, Weber AP. Surveying the Oligomeric State of Arabidopsis thaliana Chloroplasts. Molecular Plant 2017;10:197-211. [DOI: 10.1016/j.molp.2016.10.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
30 Spaans SK, Weusthuis RA, van der Oost J, Kengen SW. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015;6:742. [PMID: 26284036 DOI: 10.3389/fmicb.2015.00742] [Cited by in Crossref: 151] [Cited by in F6Publishing: 133] [Article Influence: 21.6] [Reference Citation Analysis]
31 Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021;121:2020-108. [PMID: 33464892 DOI: 10.1021/acs.chemrev.0c00712] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
32 Flannery SE, Hepworth C, Wood WHJ, Pastorelli F, Hunter CN, Dickman MJ, Jackson PJ, Johnson MP. Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis. Plant J 2021;105:223-44. [PMID: 33118270 DOI: 10.1111/tpj.15053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
33 Cvetkovska M, Szyszka-Mroz B, Possmayer M, Pittock P, Lajoie G, Smith DR, Hüner NPA. Characterization of photosynthetic ferredoxin from the Antarctic alga Chlamydomonas sp. UWO241 reveals novel features of cold adaptation. New Phytol 2018;219:588-604. [PMID: 29736931 DOI: 10.1111/nph.15194] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
34 Ermakova M, Bellasio C, Fitzpatrick D, Furbank RT, Mamedov F, von Caemmerer S. Upregulation of bundle sheath electron transport capacity under limiting light in C4 Setaria viridis. Plant J 2021;106:1443-54. [PMID: 33772896 DOI: 10.1111/tpj.15247] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Nymark M, Grønbech Hafskjold MC, Volpe C, Fonseca DM, Sharma A, Tsirvouli E, Serif M, Winge P, Finazzi G, Bones AM. Functional studies of CpSRP54 in diatoms show that the mechanism of thylakoid protein insertion differs from that in plants and green algae. Plant J 2021;106:113-32. [PMID: 33372269 DOI: 10.1111/tpj.15149] [Reference Citation Analysis]