BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020;9:13-30. [PMID: 32161726 DOI: 10.2147/ITT.S241064] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Dube A, Egieyeh S, Balogun M. A Perspective on Nanotechnology and COVID-19 Vaccine Research and Production in South Africa. Viruses 2021;13:2095. [PMID: 34696526 DOI: 10.3390/v13102095] [Reference Citation Analysis]
2 Couto J, Seixas G, Stutzer C, Olivier NA, Maritz-Olivier C, Antunes S, Domingos A. Probing the Rhipicephalusbursa Sialomes in Potential Anti-Tick Vaccine Candidates: A Reverse Vaccinology Approach. Biomedicines 2021;9:363. [PMID: 33807386 DOI: 10.3390/biomedicines9040363] [Reference Citation Analysis]
3 Napolitano F, Xu X, Gao X. Impact of computational approaches in the fight against COVID-19: an AI guided review of 17 000 studies. Brief Bioinform 2021:bbab456. [PMID: 34788381 DOI: 10.1093/bib/bbab456] [Reference Citation Analysis]
4 Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021;8:697194. [PMID: 34805327 DOI: 10.3389/fvets.2021.697194] [Reference Citation Analysis]
5 Khalid K, Irum S, Ullah SR, Andleeb S. In-Silico Vaccine Design Based on a Novel Vaccine Candidate Against Infections Caused by Acinetobacter baumannii. Int J Pept Res Ther 2022;28:16. [PMID: 34873398 DOI: 10.1007/s10989-021-10316-7] [Reference Citation Analysis]
6 Soltan MA, Eldeen MA, Elbassiouny N, Mohamed I, El-Damasy DA, Fayad E, Abu Ali OA, Raafat N, Eid RA, Al-Karmalawy AA. Proteome Based Approach Defines Candidates for Designing a Multitope Vaccine against the Nipah Virus. Int J Mol Sci 2021;22:9330. [PMID: 34502239 DOI: 10.3390/ijms22179330] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Atapour A, Ghalamfarsa F, Naderi S, Hatam G. Designing of a Novel Fusion Protein Vaccine Candidate Against Human Visceral Leishmaniasis (VL) Using Immunoinformatics and Structural Approaches. Int J Pept Res Ther 2021;:1-14. [PMID: 33935610 DOI: 10.1007/s10989-021-10218-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Sarkar B, Ullah MA, Araf Y, Rahman MS. Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Inform Med Unlocked 2020;21:100478. [PMID: 33200088 DOI: 10.1016/j.imu.2020.100478] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
9 Vijayakumar S. Harnessing Fuzzy Rule Based System for Screening Major Histocompatibility Complex Class I Peptide Epitopes from the Whole Proteome: An Implementation on the Proteome of Leishmania donovani. J Comput Biol 2022. [PMID: 35404099 DOI: 10.1089/cmb.2021.0464] [Reference Citation Analysis]
10 Kumar N, Sood D, Chandra R. Vaccine Formulation and Optimization for Human Herpes Virus-5 through an Immunoinformatics Framework. ACS Pharmacol Transl Sci 2020;3:1318-29. [PMID: 33344905 DOI: 10.1021/acsptsci.0c00139] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
11 Islam E. Development of epitope-based chimeric protein as a vaccine against Lujo virus by utilizing immunoinformatic tools. Future Virology. [DOI: 10.2217/fvl-2021-0105] [Reference Citation Analysis]
12 Das SK, Paul M, Behera BC, Thatoi H. Current status of COVID-19 vaccination: safety and liability concern for children, pregnant and lactating women. Expert Rev Vaccines 2022. [PMID: 35313785 DOI: 10.1080/14760584.2022.2056025] [Reference Citation Analysis]
13 Law H, Venturi V, Kelleher A, Munier CML. Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020;21:E8524. [PMID: 33198297 DOI: 10.3390/ijms21228524] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Barghash RF, Fawzy IM, Chandrasekar V, Singh AV, Katha U, Mandour AA. In Silico Modeling as a Perspective in Developing Potential Vaccine Candidates and Therapeutics for COVID-19. Coatings 2021;11:1273. [DOI: 10.3390/coatings11111273] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Ghandadi M. An Immunoinformatic Strategy to Develop New Mycobacterium tuberculosis Multi-epitope Vaccine. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10406-0] [Reference Citation Analysis]
16 Marques da Silva W, Seyffert N, Silva A, Azevedo V. A journey through the Corynebacterium pseudotuberculosis proteome promotes insights into its functional genome. PeerJ 2021;9:e12456. [PMID: 35036114 DOI: 10.7717/peerj.12456] [Reference Citation Analysis]
17 Prates-Syed WA, Chaves LCS, Crema KP, Vuitika L, Lira A, Côrtes N, Kersten V, Guimarães FEG, Sadraeian M, Barroso da Silva FL, Cabral-Marques O, Barbuto JAM, Russo M, Câmara NOS, Cabral-Miranda G. VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. Vaccines (Basel) 2021;9:1409. [PMID: 34960155 DOI: 10.3390/vaccines9121409] [Reference Citation Analysis]
18 Kangabam R, Sahoo S, Ghosh A, Roy R, Silla Y, Misra N, Suar M. Next-generation computational tools and resources for coronavirus research: From detection to vaccine discovery. Comput Biol Med 2021;128:104158. [PMID: 33301953 DOI: 10.1016/j.compbiomed.2020.104158] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Yılmaz Çolak Ç. Computational Design of a Multi-epitope Vaccine Against Clostridium chauvoei: An Immunoinformatics Approach. Int J Pept Res Ther 2021;:1-11. [PMID: 34493934 DOI: 10.1007/s10989-021-10279-9] [Reference Citation Analysis]
20 Ferreira CS, Martins YC, Souza RC, Vasconcelos ATR. EpiCurator: an immunoinformatic workflow to predict and prioritize SARS-CoV-2 epitopes. PeerJ 2021;9:e12548. [PMID: 34909278 DOI: 10.7717/peerj.12548] [Reference Citation Analysis]
21 Robleda-Castillo R, Ros-Lucas A, Martinez-Peinado N, Alonso-Padilla J. An Overview of Current Uses and Future Opportunities for Computer-Assisted Design of Vaccines for Neglected Tropical Diseases. Adv Appl Bioinform Chem 2021;14:25-47. [PMID: 33623396 DOI: 10.2147/AABC.S258759] [Reference Citation Analysis]
22 Ullah N, Anwer F, Ishaq Z, Siddique A, Shah MA, Rahman M, Rahman A, Mao X, Jiang T, Lee BL, Bae T, Ali A. In silico designed Staphylococcus aureus B-cell multi-epitope vaccine did not elicit antibodies against target antigens suggesting multi-domain approach. J Immunol Methods 2022;:113264. [PMID: 35341759 DOI: 10.1016/j.jim.2022.113264] [Reference Citation Analysis]
23 Omoniyi AA, Adebisi SS, Musa SA, Nzalak JO, Bauchi ZM, Bako KW, Olatomide OD, Zachariah R, Nyengaard JR. In silico design and analyses of a multi-epitope vaccine against Crimean-Congo hemorrhagic fever virus through reverse vaccinology and immunoinformatics approaches. Sci Rep 2022;12:8736. [PMID: 35610299 DOI: 10.1038/s41598-022-12651-1] [Reference Citation Analysis]
24 Opriessnig T, Mattei AA, Karuppannan AK, Halbur PG. Future perspectives on swine viral vaccines: where are we headed? Porcine Health Manag 2021;7:1. [PMID: 33397477 DOI: 10.1186/s40813-020-00179-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Beiranvand S, Doosti A, Mirzaei SA. Putative novel B-cell vaccine candidates identified by reverse vaccinology and genomics approaches to control Acinetobacter baumannii serotypes. Infect Genet Evol 2021;96:105138. [PMID: 34793968 DOI: 10.1016/j.meegid.2021.105138] [Reference Citation Analysis]
26 Soltan MA, Eldeen MA, Elbassiouny N, Kamel HL, Abdelraheem KM, El-Gayyed HA, Gouda AM, Sheha MF, Fayad E, Ali OAA, Ghany KAE, El-Damasy DA, Darwish KM, Elhady SS, Sileem AE. In Silico Designing of a Multitope Vaccine against Rhizopus microsporus with Potential Activity against Other Mucormycosis Causing Fungi. Cells 2021;10:3014. [PMID: 34831237 DOI: 10.3390/cells10113014] [Reference Citation Analysis]
27 Queiroz AMV, Oliveira JWF, Moreno CJ, Guérin DMA, Silva MS. VLP-Based Vaccines as a Suitable Technology to Target Trypanosomatid Diseases. Vaccines (Basel) 2021;9:220. [PMID: 33807516 DOI: 10.3390/vaccines9030220] [Reference Citation Analysis]
28 Rowaiye AB, Onuh OA, Oli AN, Okpalefe OA, Oni S, Nwankwo EJ. The pandemic COVID-19: a tale of viremia, cellular oxidation and immune dysfunction. Pan Afr Med J 2020;36:188. [PMID: 32952832 DOI: 10.11604/pamj.2020.36.188.23476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Dong R, Chu Z, Yu F, Zha Y. Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches. Front Immunol 2020;11:1784. [PMID: 32849643 DOI: 10.3389/fimmu.2020.01784] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
30 Shahbazi S, Sabzi S, Noori Goodarzi N, Fereshteh S, Bolourchi N, Mirzaie B, Badmasti F. Identification of novel putative immunogenic targets and construction of a multi-epitope vaccine against multidrug-resistant Corynebacterium jeikeium using reverse vaccinology approach. Microbial Pathogenesis 2022. [DOI: 10.1016/j.micpath.2022.105425] [Reference Citation Analysis]
31 Devi SS, Kardam V, Dubey KD, Dwivedi M. Deciphering the immunogenic T-cell epitopes from spike protein of SARS-CoV-2 concerning the diverse population of India. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2022.2037462] [Reference Citation Analysis]