BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yi X, Wang F, Qin W, Yang X, Yuan J. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomedicine 2014;9:1347-65. [PMID: 24648733 DOI: 10.2147/IJN.S60206] [Cited by in Crossref: 147] [Cited by in F6Publishing: 42] [Article Influence: 18.4] [Reference Citation Analysis]
Number Citing Articles
1 Thapaliya ER, Zhang Y, Dhakal P, Brown AS, Wilson JN, Collins KM, Raymo FM. Bioimaging with Macromolecular Probes Incorporating Multiple BODIPY Fluorophores. Bioconjug Chem 2017;28:1519-28. [PMID: 28430413 DOI: 10.1021/acs.bioconjchem.7b00166] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 4.4] [Reference Citation Analysis]
2 Bosiak MJ, Trzaska P, Kędziera D, Adams J. Synthesis and photoluminescence properties of star-shaped 2,3,6,7-tetrasubstituted benzo[1,2-b:4,5-b′]difurans. Dyes and Pigments 2016;129:199-208. [DOI: 10.1016/j.dyepig.2016.01.025] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
3 Handula M, Verhoeven M, Chen K, Haeck J, de Jong M, Dalm S, Seimbille Y. Towards Complete Tumor Resection: Novel Dual-Modality Probes for Improved Image-Guided Surgery of GRPR-Expressing Prostate Cancer. Pharmaceutics 2022;14:195. [DOI: 10.3390/pharmaceutics14010195] [Reference Citation Analysis]
4 Quan LM, Mechler AI, Barnard PJ. A luminescent lipid mimetic iridium(III) N-heterocyclic carbene complex for membrane labelling. J Inorg Biochem 2020;206:111047. [PMID: 32151874 DOI: 10.1016/j.jinorgbio.2020.111047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Belko NV, Samtsov MP, Lugovski AA. Spectral Properties of Indotricarbocyanine Dye during Self-Assembly of Its H*- and J-Aggregates. Opt Spectrosc 2020;128:1758-67. [DOI: 10.1134/s0030400x20110053] [Reference Citation Analysis]
6 Zhu S, Tian R, Antaris AL, Chen X, Dai H. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery. Adv Mater 2019;31:e1900321. [PMID: 31025403 DOI: 10.1002/adma.201900321] [Cited by in Crossref: 200] [Cited by in F6Publishing: 160] [Article Influence: 66.7] [Reference Citation Analysis]
7 Maloney R, Buuh ZY, Zhao Y, Wang RE. Site-specific antibody fragment conjugates for targeted imaging. Methods Enzymol 2020;638:295-320. [PMID: 32416919 DOI: 10.1016/bs.mie.2020.02.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhang L, Jia H, Liu X, Zou Y, Sun J, Liu M, Jia S, Liu N, Li Y, Wang Q. Heptamethine Cyanine–Based Application for Cancer Theranostics. Front Pharmacol 2022;12:764654. [DOI: 10.3389/fphar.2021.764654] [Reference Citation Analysis]
9 Suzuki N, Suda K, Yokogawa D, Kitoh-Nishioka H, Irle S, Ando A, Abegão LMG, Kamada K, Fukazawa A, Yamaguchi S. Near infrared two-photon-excited and -emissive dyes based on a strapped excited-state intramolecular proton-transfer (ESIPT) scaffold. Chem Sci 2018;9:2666-73. [PMID: 29719675 DOI: 10.1039/c8sc00066b] [Cited by in Crossref: 31] [Cited by in F6Publishing: 7] [Article Influence: 7.8] [Reference Citation Analysis]
10 Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019;10:510. [PMID: 31139085 DOI: 10.3389/fphar.2019.00510] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 11.7] [Reference Citation Analysis]
11 Ovchinnikov OV, Kondratenko TS, Grevtseva IG, Smirnov MS, Pokutnyi SI. Sensitization of photoprocesses in colloidal Ag 2 S quantum dots by dye molecules. J Nanophoton 2016;10:033505. [DOI: 10.1117/1.jnp.10.033505] [Cited by in Crossref: 22] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
12 Wang H, He Z, Liu X, Huang Y, Hou J, Zhang W, Ding D. Advances in Prostate‐Specific Membrane Antigen (PSMA)‐Targeted Phototheranostics of Prostate Cancer. Small Structures. [DOI: 10.1002/sstr.202200036] [Reference Citation Analysis]
13 Feng X, Wang Q, Liao Y, Zhou X, Wang Y, Liu W, Zhang G. A synthetic urinary probe-coated nanoparticles sensitive to fibroblast activation protein α for solid tumor diagnosis. Int J Nanomedicine 2017;12:5359-72. [PMID: 28794628 DOI: 10.2147/IJN.S139039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
14 Fan YF, Zhu SX, Hou FB, Zhao DF, Pan QS, Xiang YW, Qian XK, Ge GB, Wang P. Spectrophotometric Assays for Sensing Tyrosinase Activity and Their Applications. Biosensors (Basel) 2021;11:290. [PMID: 34436092 DOI: 10.3390/bios11080290] [Reference Citation Analysis]
15 Ernst P, Press AT, Fischer M, Günther V, Gräfe C, Clement JH, Ernst T, Schubert US, Wotschadlo J, Lehmann M, Enzensperger C, Bauer M, Hochhaus A. Polymethine Dye-Functionalized Nanoparticles for Targeting CML Stem Cells. Mol Ther Oncolytics 2020;18:372-81. [PMID: 32913887 DOI: 10.1016/j.omto.2020.07.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Thomas RG, Moon MJ, Surendran SP, Park HJ, Park IK, Lee BI, Jeong YY. MHI-148 Cyanine Dye Conjugated Chitosan Nanomicelle with NIR Light-Trigger Release Property as Cancer Targeting Theranostic Agent. Mol Imaging Biol 2018;20:533-43. [PMID: 29450802 DOI: 10.1007/s11307-018-1169-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
17 Silindir-Gunay M, Sarcan ET, Ozer AY. Near-infrared imaging of diseases: A nanocarrier approach. Drug Dev Res 2019. [PMID: 30893508 DOI: 10.1002/ddr.21532] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Le KQ. Engineered metallic nanostructures for dye fluorescence enhancement: Experiment and simulation. Physica B: Condensed Matter 2019;560:140-5. [DOI: 10.1016/j.physb.2019.02.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Haris M, Nisar S, Hashem S, Bhat AA, Yadav S, Shanmugakonar M, Al-Naemi H, Bagga P, Uddin S, Reddy R. Functional In Vivo Imaging of Tumors. Cancer Treat Res 2020;180:3-50. [PMID: 32215865 DOI: 10.1007/978-3-030-38862-1_1] [Reference Citation Analysis]
20 Lee HJ, Sanetuntikul J, Choi ES, Lee BR, Kim JH, Kim E, Shanmugam S. Photothermal cancer therapy using graphitic carbon-coated magnetic particles prepared by one-pot synthesis. Int J Nanomedicine 2015;10:271-82. [PMID: 25565819 DOI: 10.2147/IJN.S73128] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Yuan Z, Gui L, Zheng J, Chen Y, Qu S, Shen Y, Wang F, Er M, Gu Y, Chen H. GSH-Activated Light-Up Near-Infrared Fluorescent Probe with High Affinity to α v β 3 Integrin for Precise Early Tumor Identification. ACS Appl Mater Interfaces 2018;10:30994-1007. [DOI: 10.1021/acsami.8b09841] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
22 Vats M, Mishra SK, Baghini MS, Chauhan DS, Srivastava R, De A. Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation. Int J Mol Sci 2017;18:E924. [PMID: 28452928 DOI: 10.3390/ijms18050924] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
23 Holmes J, Sushma AA, Tsvetkova IB, Schaich WL, Schaller RD, Dragnea B. Ultrafast Collective Excited-State Dynamics of a Virus-Supported Fluorophore Antenna. J Phys Chem Lett 2022;:3237-43. [PMID: 35380843 DOI: 10.1021/acs.jpclett.2c00262] [Reference Citation Analysis]
24 Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018;38:3-24. [PMID: 28589558 DOI: 10.1002/jat.3476] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 9.4] [Reference Citation Analysis]
25 Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019;10:1264. [PMID: 31708785 DOI: 10.3389/fphar.2019.01264] [Cited by in Crossref: 52] [Cited by in F6Publishing: 29] [Article Influence: 17.3] [Reference Citation Analysis]
26 Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2021. [PMID: 34897302 DOI: 10.1039/c9cs00621d] [Reference Citation Analysis]
27 Sannikova NE, Zhdanova KA, Spitsyna AS, Bragina NA, Fedin MV, Krumkacheva OA. Study of Cationic Porphyrins and Their Metal Complexes by ESR Techniques. Russ J Coord Chem 2022;48:1-8. [DOI: 10.1134/s1070328422010031] [Reference Citation Analysis]
28 Thomas RG, Jeong YY. NIRF Heptamethine Cyanine Dye Nanocomplexes for Multi Modal Theranosis of Tumors. Chonnam Med J 2017;53:83-94. [PMID: 28584786 DOI: 10.4068/cmj.2017.53.2.83] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
29 Deng SL, Li YQ, Zhao G. Imaging Gliomas with Nanoparticle-Labeled Stem Cells. Chin Med J (Engl) 2018;131:721-30. [PMID: 29521296 DOI: 10.4103/0366-6999.226900] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG, Bruns OT. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA 2018;115:4465-70. [DOI: 10.1073/pnas.1718917115] [Cited by in Crossref: 242] [Cited by in F6Publishing: 201] [Article Influence: 60.5] [Reference Citation Analysis]
31 Lyu Z, Kang L, Buuh ZY, Jiang D, McGuth JC, Du J, Wissler HL, Cai W, Wang RE. A Switchable Site-Specific Antibody Conjugate. ACS Chem Biol 2018;13:958-64. [PMID: 29461804 DOI: 10.1021/acschembio.8b00107] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
32 Zhang C, Zhao Y, Zhang H, Chen X, Zhao N, Tan D, Zhang H, Shi C. The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma. Int J Mol Sci 2017;18:E1332. [PMID: 28635650 DOI: 10.3390/ijms18061332] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 4.4] [Reference Citation Analysis]
33 Quang TT, Kim HY, Bao FS, Papay FA, Edwards WB, Liu Y. Fluorescence Imaging Topography Scanning System for intraoperative multimodal imaging. PLoS One 2017;12:e0174928. [PMID: 28437441 DOI: 10.1371/journal.pone.0174928] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Nascimento AV, Gattacceca F, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM. Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine (Lond) 2016;11:767-81. [PMID: 26980454 DOI: 10.2217/nnm.16.14] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
35 He J, Yang L, Yi W, Fan W, Wen Y, Miao X, Xiong L. Combination of Fluorescence-Guided Surgery With Photodynamic Therapy for the Treatment of Cancer. Mol Imaging 2017;16:1536012117722911. [PMID: 28849712 DOI: 10.1177/1536012117722911] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
36 Bardon KM, Selfridge S, Adams DS, Minns RA, Pawle R, Adams TC, Takiff L. Synthesis of Water-Soluble Far-Red-Emitting Amphiphilic BODIPY Dyes. ACS Omega 2018;3:13195-9. [PMID: 30411029 DOI: 10.1021/acsomega.8b01487] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
37 Zhang RR, Schroeder AB, Grudzinski JJ, Rosenthal EL, Warram JM, Pinchuk AN, Eliceiri KW, Kuo JS, Weichert JP. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol 2017;14:347-64. [PMID: 28094261 DOI: 10.1038/nrclinonc.2016.212] [Cited by in Crossref: 192] [Cited by in F6Publishing: 177] [Article Influence: 38.4] [Reference Citation Analysis]
38 Kelkar SS, Hill TK, Marini FC, Mohs AM. Near infrared fluorescent nanoparticles based on hyaluronic acid: Self-assembly, optical properties, and cell interaction. Acta Biomater 2016;36:112-21. [PMID: 26995504 DOI: 10.1016/j.actbio.2016.03.024] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.7] [Reference Citation Analysis]
39 Adriano B, Cotto NM, Chauhan N, Karumuru V, Jaggi M, Chauhan SC, Yallapu MM. Bay Leaf Extract-Based Near-Infrared Fluorescent Probe for Tissue and Cellular Imaging. J Imaging 2021;7:256. [PMID: 34940722 DOI: 10.3390/jimaging7120256] [Reference Citation Analysis]
40 Wang H, Li X, Tse BW, Yang H, Thorling CA, Liu Y, Touraud M, Chouane JB, Liu X, Roberts MS, Liang X. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 2018;8:1227-42. [PMID: 29507616 DOI: 10.7150/thno.22872] [Cited by in Crossref: 112] [Cited by in F6Publishing: 112] [Article Influence: 28.0] [Reference Citation Analysis]
41 Lian X, Wei MY, Ma Q. Nanomedicines for Near-Infrared Fluorescent Lifetime-Based Bioimaging. Front Bioeng Biotechnol 2019;7:386. [PMID: 31867317 DOI: 10.3389/fbioe.2019.00386] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
42 Yi X, Yan F, Wang F, Qin W, Wu G, Yang X, Shao C, Chung LW, Yuan J. IR-780 dye for near-infrared fluorescence imaging in prostate cancer. Med Sci Monit 2015;21:511-7. [PMID: 25686161 DOI: 10.12659/MSM.892437] [Cited by in Crossref: 35] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
43 Yu X, Jin C. Application of albumin-based nanoparticles in the management of cancer. J Mater Sci Mater Med 2016;27:4. [PMID: 26610927 DOI: 10.1007/s10856-015-5618-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
44 Pianosi K, Jordan K, Moore CC. Near-infrared heating of skin to delineate non-melanoma skin cancer lesions: A pilot study. Skin Res Technol 2021;27:234-40. [PMID: 32713072 DOI: 10.1111/srt.12936] [Reference Citation Analysis]
45 Li L, Wu C, Pan L, Li X, Kuang A, Cai H, Tian R. Bombesin-functionalized superparamagnetic iron oxide nanoparticles for dual-modality MR/NIRFI in mouse models of breast cancer. Int J Nanomedicine 2019;14:6721-32. [PMID: 31686805 DOI: 10.2147/IJN.S211476] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
46 Belko NV, Samtsov MP, Gusakov GA, Tarasau DS, Lugovski AA, Voropay ES. Spectral and Luminescent Properties and Morphology of Self-Assembled Nanostructures of an Indotricarbocyanine Dye. J Appl Spectrosc 2019;85:997-1005. [DOI: 10.1007/s10812-019-00753-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Sutton MN, Gammon ST, Muzzioli R, Pisaneschi F, Radaram B, Yang P, Piwnica-Worms D. RAS-Driven Macropinocytosis of Albumin or Dextran Reveals Mutation-Specific Target Engagement of RAS p.G12C Inhibitor ARS-1620 by NIR-Fluorescence Imaging. Mol Imaging Biol 2021. [PMID: 34905147 DOI: 10.1007/s11307-021-01689-8] [Reference Citation Analysis]
48 Wang KH, Wang YM, Chiu LH, Chen TC, Tsai YH, Zuo CS, Chen KC, Changou CA, Lai WT. Optical imaging of ovarian cancer using a matrix metalloproteinase-3-sensitive near-infrared fluorescent probe. PLoS One 2018;13:e0192047. [PMID: 29390034 DOI: 10.1371/journal.pone.0192047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
49 Abuelmakarem HS, Sliem MA, El-Azab J, Farghaly MMA, Ahmed WA. Toward Highly Efficient Cancer Imaging and Therapy Using the Environment-Friendly Chitosan Nanoparticles and NIR Laser. Biosensors (Basel) 2019;9:E28. [PMID: 30781627 DOI: 10.3390/bios9010028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Yan X, Wu G, Qu Q, Fan X, Xu X, Liu N. A Hybrid Peptide PTS that Facilitates Transmembrane Delivery and Its Application for the Rapid In vivo Imaging via Near-Infrared Fluorescence Imaging. Front Pharmacol 2016;7:51. [PMID: 27014065 DOI: 10.3389/fphar.2016.00051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
51 Qi S, Kwon N, Yim Y, Nguyen VN, Yoon J. Fine-tuning the electronic structure of heavy-atom-free BODIPY photosensitizers for fluorescence imaging and mitochondria-targeted photodynamic therapy. Chem Sci 2020;11:6479-84. [PMID: 34094113 DOI: 10.1039/d0sc01171a] [Cited by in Crossref: 34] [Cited by in F6Publishing: 4] [Article Influence: 17.0] [Reference Citation Analysis]
52 Ning Y, Tang J, Liu YW, Jing J, Sun Y, Zhang JL. Highly luminescent, biocompatible ytterbium(iii) complexes as near-infrared fluorophores for living cell imaging. Chem Sci 2018;9:3742-53. [PMID: 29780506 DOI: 10.1039/c8sc00259b] [Cited by in Crossref: 63] [Cited by in F6Publishing: 6] [Article Influence: 15.8] [Reference Citation Analysis]
53 Lv W, Shen Y, Yang H, Yang R, Cai W, Zhang J, Yuan L, Duan Y, Zhang L. A Novel Bimodal Imaging Agent Targeting HER2 Molecule of Breast Cancer. J Immunol Res 2018;2018:6202876. [PMID: 29854844 DOI: 10.1155/2018/6202876] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
54 Yang H, Zhou T, Cai W, Yi X, Liu X, Wang Y, Zhang L, Duan Y. Novel dual-mode nanobubbles as potential targeted contrast agents for female tumors exploration. Tumour Biol 2016;37:14153-63. [PMID: 27539728 DOI: 10.1007/s13277-016-5238-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
55 Yuan J, Yi X, Yan F, Wang F, Qin W, Wu G, Yang X, Shao C, Chung LW. Near‑infrared fluorescence imaging of prostate cancer using heptamethine carbocyanine dyes. Mol Med Rep 2015;11:821-8. [PMID: 25354708 DOI: 10.3892/mmr.2014.2815] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
56 Liu Y, Xu M, Chen Q, Guan G, Hu W, Zhao X, Qiao M, Hu H, Liang Y, Zhu H, Chen D. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. Int J Nanomedicine 2015;10:4747-61. [PMID: 26251596 DOI: 10.2147/IJN.S82940] [Cited by in Crossref: 63] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
57 Laxman K, Reddy BPK, Mishra SK, Gopal MB, Robinson A, De A, Srivastava R, Ravikanth M. BF2-Oxasmaragdyrin Nanoparticles: A Non-toxic, Photostable, Enhanced Non-radiative Decay-Assisted Efficient Photothermal Cancer Theragnostic Agent. ACS Appl Mater Interfaces 2020;12:52329-42. [PMID: 33170618 DOI: 10.1021/acsami.0c13326] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
58 Amrahli M, Centelles M, Cressey P, Prusevicius M, Gedroyc W, Xu XY, So PW, Wright M, Thanou M. MR-labelled liposomes and focused ultrasound for spatiotemporally controlled drug release in triple negative breast cancers in mice. Nanotheranostics 2021;5:125-42. [PMID: 33457192 DOI: 10.7150/ntno.52168] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]