BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gallo E, Diaferia C, Rosa E, Smaldone G, Morelli G, Accardo A. Peptide-Based Hydrogels and Nanogels for Delivery of Doxorubicin. Int J Nanomedicine 2021;16:1617-30. [PMID: 33688182 DOI: 10.2147/IJN.S296272] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Wang Y, Geng Q, Zhang Y, Adler-Abramovich L, Fan X, Mei D, Gazit E, Tao K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 2023;636:113-33. [PMID: 36623365 DOI: 10.1016/j.jcis.2022.12.166] [Reference Citation Analysis]
2 Todaro B, Santi M. Characterization and Functionalization Approaches for the Study of Polymeric Nanoparticles: The State of the Art in Italian Research. Micro 2022;3:9-21. [DOI: 10.3390/micro3010002] [Reference Citation Analysis]
3 Gomes V, Veloso SRS, Correa-Duarte MA, Ferreira PMT, Castanheira EMS. Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int J Mol Sci 2022;24. [PMID: 36613630 DOI: 10.3390/ijms24010186] [Reference Citation Analysis]
4 Rosa E, Gallo E, Sibillano T, Giannini C, Rizzuti S, Gianolio E, Scognamiglio PL, Morelli G, Accardo A, Diaferia C. Incorporation of PEG Diacrylates (PEGDA) Generates Hybrid Fmoc-FF Hydrogel Matrices. Gels 2022;8. [PMID: 36547355 DOI: 10.3390/gels8120831] [Reference Citation Analysis]
5 Rosa E, Carniato F, Tei L, Diaferia C, Morelli G, Botta M, Accardo A. Peptide-Based Hydrogels and Nanogels Containing Gd(III) Complexes as T(1) Relaxation Agents. Pharmaceuticals (Basel) 2022;15. [PMID: 36559023 DOI: 10.3390/ph15121572] [Reference Citation Analysis]
6 Ramos-de-la-peña AM, Contreras-esquivel JC, Aguilar O, González-valdez J. Structural and bioactive roles of fucoidan in nanogel delivery systems. A review. Carbohydrate Polymer Technologies and Applications 2022;4:100235. [DOI: 10.1016/j.carpta.2022.100235] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Li X, Liao Q, Yang Y, Guo X, Xu D, Li M, Wu Y, Wang J, Li Y. Facile, High-Yield, and Freeze-and-Thaw-Assisted Approach to Fabricate Bamboo-Derived Hollow Lignocellulose Microcapsules for Controlled Drug Release. ACS Sustainable Chem Eng 2022. [DOI: 10.1021/acssuschemeng.2c04796] [Reference Citation Analysis]
8 Abioye RO, Acquah C, Hsu PCQ, Hüttmann N, Sun X, Udenigwe CC. Self-assembly and Hydrogelation Properties of Peptides Derived from Peptic Cleavage of Aggregation-prone Regions of Ovalbumin. Gels 2022;8:641. [PMID: 36286142 DOI: 10.3390/gels8100641] [Reference Citation Analysis]
9 Chang Y, Rui W, Zhang M, Zhou S, Qiu L, Cui P, Hu H, Jiang P, Du X, Ni X, Wang C, Wang J. Facile preparation of copper-gallic acid nanoparticles as a high reproducible and drug loading platform for doxorubicin. Journal of Drug Delivery Science and Technology 2022;76:103686. [DOI: 10.1016/j.jddst.2022.103686] [Reference Citation Analysis]
10 Rani V, Venkatesan J, Prabhu A. Liposomes- A promising strategy for drug delivery in anticancer applications. Journal of Drug Delivery Science and Technology 2022;76:103739. [DOI: 10.1016/j.jddst.2022.103739] [Reference Citation Analysis]
11 Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022;27:5436. [DOI: 10.3390/molecules27175436] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Binaymotlagh R, Chronopoulou L, Haghighi FH, Fratoddi I, Palocci C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. Materials 2022;15:5871. [DOI: 10.3390/ma15175871] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Zhao C, Wang Y, Shi B, Li M, Yan W, Yang H. Tailoring co-assembly loading of doxorubicin in solvent-triggering gel. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.06.175] [Reference Citation Analysis]
14 Veloso SRS, Tiryaki E, Spuch C, Hilliou L, Amorim CO, Amaral VS, Coutinho PJG, Ferreira PMT, Salgueiriño V, Correa-Duarte MA, Castanheira EMS. Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. Nanoscale 2022;14:5488-500. [PMID: 35332904 DOI: 10.1039/d1nr08158f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Almoshari YH. Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source. Gels 2022;8:174. [DOI: 10.3390/gels8030174] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 González-ayón MA, Licea-rodriguez J, Méndez ER, Licea-claverie A. NVCL-Based Galacto-Functionalized and Thermosensitive Nanogels with GNRDs for Chemo/Photothermal-Therapy. Pharmaceutics 2022;14:560. [DOI: 10.3390/pharmaceutics14030560] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wang T, Wu J, Wang R, Zhong Q. Nanostructures self-assembled from food-grade molecules with pH-cycle as functional food ingredients. Trends in Food Science & Technology 2022;120:36-47. [DOI: 10.1016/j.tifs.2022.01.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
18 Liu H, Guo C, Shang Y, Zeng L, Jia H, Wang Z. A Supramolecular Nanoparticle of Pemetrexed Improves the Anti-Tumor Effect by Inhibiting Mitochondrial Energy Metabolism. Front Bioeng Biotechnol 2021;9:804747. [PMID: 34993192 DOI: 10.3389/fbioe.2021.804747] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Theodoroula NF, Karavasili C, Vlasiou MC, Primikyri A, Nicolaou C, Chatzikonstantinou AV, Chatzitaki AT, Petrou C, Bouropoulos N, Zacharis CK, Galatou E, Sarigiannis Y, Fatouros DG, Vizirianakis IS. NGIWY-Amide: A Bioinspired Ultrashort Self-Assembled Peptide Gelator for Local Drug Delivery Applications. Pharmaceutics 2022;14:133. [PMID: 35057029 DOI: 10.3390/pharmaceutics14010133] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Li X, Zhang H, Liu L, Cao C, Wei P, Yi X, Zhou Y, Lv Q, Zhou D, Yi T. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release. J Mater Chem B 2021;9:8686-93. [PMID: 34617098 DOI: 10.1039/d1tb01628h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Zhang M, Li L, An H, Zhang P, Liu P. Repair of Peripheral Nerve Injury Using Hydrogels Based on Self-Assembled Peptides. Gels 2021;7:152. [PMID: 34698159 DOI: 10.3390/gels7040152] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
22 Diaferia C, Rosa E, Gallo E, Smaldone G, Stornaiuolo M, Morelli G, Accardo A. Self-Supporting Hydrogels Based on Fmoc-Derivatized Cationic Hexapeptides for Potential Biomedical Applications. Biomedicines 2021;9:678. [PMID: 34203919 DOI: 10.3390/biomedicines9060678] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
23 Zhu H, Liu Y, Gu D, Rao Z, Li Y, Hao J. Dual thermoresponsive mPEG-b-poly(O-benzyl-l-threonine acid) hydrogel based on β-sheet nano-structural disassembly and PEG dehydration. Polymer 2021;226:123841. [DOI: 10.1016/j.polymer.2021.123841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]