BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM. Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomedicine 2010;5:1057-65. [PMID: 21170353 DOI: 10.2147/IJN.S14912] [Cited by in Crossref: 38] [Cited by in F6Publishing: 54] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Sunoqrot S, Bae JW, Pearson RM, Shyu K, Liu Y, Kim DH, Hong S. Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles. Biomacromolecules 2012;13:1223-30. [PMID: 22439905 DOI: 10.1021/bm300316n] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 3.9] [Reference Citation Analysis]
2 Verma R, Sahu R, Dixit S, Duncan SA, Giambartolomei GH, Singh SR, Dennis VA. The Chlamydia M278 Major Outer Membrane Peptide Encapsulated in the Poly(lactic acid)-Poly(ethylene glycol) Nanoparticulate Self-Adjuvanting Delivery System Protects Mice Against a Chlamydia muridarum Genital Tract Challenge by Stimulating Robust Systemic and Local Mucosal Immune Responses. Front Immunol 2018;9:2369. [PMID: 30374357 DOI: 10.3389/fimmu.2018.02369] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
3 Kumar M, Gupta D, Singh G, Sharma S, Bhat M, Prashant CK, Dinda AK, Kharbanda S, Kufe D, Singh H. Novel polymeric nanoparticles for intracellular delivery of peptide Cargos: antitumor efficacy of the BCL-2 conversion peptide NuBCP-9. Cancer Res 2014;74:3271-81. [PMID: 24741005 DOI: 10.1158/0008-5472.CAN-13-2015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
4 Kang B, Lim J, Son HY, Choi Y, Kang T, Jung J, Huh YM, Haam S, Lim EK. PEGylated Magnetic Nano-Assemblies as Contrast Agents for Effective T2-Weighted MR Imaging. Nanomaterials (Basel) 2019;9:E410. [PMID: 30862030 DOI: 10.3390/nano9030410] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Sommerauer L, Grzybek J, Elsaesser MS, Benisek A, Sepperer T, Dachs E, Hüsing N, Petutschnigg A, Tondi G. Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization? Polymers (Basel) 2019;11:E1533. [PMID: 31547001 DOI: 10.3390/polym11101533] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
6 Ji J, Torrealba D, Ruyra À, Roher N. Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology (Basel) 2015;4:664-96. [PMID: 26492276 DOI: 10.3390/biology4040664] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
7 Salapa J, Bushman A, Lowe K, Irudayaraj J. Nano drug delivery systems in upper gastrointestinal cancer therapy. Nano Converg 2020;7:38. [PMID: 33301056 DOI: 10.1186/s40580-020-00247-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
8 Hasegawa M, Sinha RK, Kumar M, Alam M, Yin L, Raina D, Kharbanda A, Panchamoorthy G, Gupta D, Singh H, Kharbanda S, Kufe D. Intracellular Targeting of the Oncogenic MUC1-C Protein with a Novel GO-203 Nanoparticle Formulation. Clin Cancer Res 2015;21:2338-47. [PMID: 25712682 DOI: 10.1158/1078-0432.CCR-14-3000] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
9 Lee Y, Chen Y, Tarasova NI, Gaponenko V. The structure of monomeric components of self-assembling CXCR4 antagonists determines the architecture of resulting nanostructures. Nanotechnology 2011;22:505101. [PMID: 22107755 DOI: 10.1088/0957-4484/22/50/505101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
10 Dixit S, Singh SR, Yilma AN, Agee RD 2nd, Taha M, Dennis VA. Poly(lactic acid)-poly(ethylene glycol) nanoparticles provide sustained delivery of a Chlamydia trachomatis recombinant MOMP peptide and potentiate systemic adaptive immune responses in mice. Nanomedicine 2014;10:1311-21. [PMID: 24602605 DOI: 10.1016/j.nano.2014.02.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
11 Matus MF, Ludueña M, Vilos C, Palomo I, Mariscal MM. Atomic-level characterization and cilostazol affinity of poly(lactic acid) nanoparticles conjugated with differentially charged hydrophilic molecules. Beilstein J Nanotechnol 2018;9:1328-38. [PMID: 29977668 DOI: 10.3762/bjnano.9.126] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Jelonek K, Zajdel A, Wilczok A, Kaczmarczyk B, Musiał-Kulik M, Hercog A, Foryś A, Pastusiak M, Kasperczyk J. Comparison of PLA-Based Micelles and Microspheres as Carriers of Epothilone B and Rapamycin. The Effect of Delivery System and Polymer Composition on Drug Release and Cytotoxicity against MDA-MB-231 Breast Cancer Cells. Pharmaceutics 2021;13:1881. [PMID: 34834296 DOI: 10.3390/pharmaceutics13111881] [Reference Citation Analysis]
13 Hasenstein JR, Shin HC, Kasmerchak K, Buehler D, Kwon GS, Kozak KR. Antitumor activity of Triolimus: a novel multidrug-loaded micelle containing Paclitaxel, Rapamycin, and 17-AAG. Mol Cancer Ther 2012;11:2233-42. [PMID: 22896668 DOI: 10.1158/1535-7163.MCT-11-0987] [Cited by in Crossref: 58] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
14 Maslanka Figueroa S, Veser A, Abstiens K, Fleischmann D, Beck S, Goepferich A. Influenza A virus mimetic nanoparticles trigger selective cell uptake. Proc Natl Acad Sci U S A 2019;116:9831-6. [PMID: 31036631 DOI: 10.1073/pnas.1902563116] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
15 Debele TA, Peng S, Tsai HC. Drug Carrier for Photodynamic Cancer Therapy. Int J Mol Sci 2015;16:22094-136. [PMID: 26389879 DOI: 10.3390/ijms160922094] [Cited by in Crossref: 132] [Cited by in F6Publishing: 110] [Article Influence: 18.9] [Reference Citation Analysis]
16 Li Y, Xu Y, Fleischer CC, Huang J, Lin R, Yang L, Mao H. Impact of Anti-Biofouling Surface Coatings on the Properties of Nanomaterials and Their Biomedical Applications. J Mater Chem B 2018;6:9-24. [PMID: 29479429 DOI: 10.1039/C7TB01695F] [Cited by in Crossref: 35] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
17 Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv Drug Deliv Rev 2020;156:80-118. [PMID: 32980449 DOI: 10.1016/j.addr.2020.09.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
18 Shukla AK, Patra S, Dubey VK. Nanospheres encapsulating anti-leishmanial drugs for their specific macrophage targeting, reduced toxicity, and deliberate intracellular release. Vector Borne Zoonotic Dis 2012;12:953-60. [PMID: 22925019 DOI: 10.1089/vbz.2011.0948] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
19 Tam YT, Gao J, Kwon GS. Oligo(lactic acid)n-Paclitaxel Prodrugs for Poly(ethylene glycol)-block-poly(lactic acid) Micelles: Loading, Release, and Backbiting Conversion for Anticancer Activity. J Am Chem Soc 2016;138:8674-7. [PMID: 27374999 DOI: 10.1021/jacs.6b03995] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 6.5] [Reference Citation Analysis]
20 Mundel R, Thakur T, Chatterjee M. Emerging uses of PLA–PEG copolymer in cancer drug delivery. 3 Biotech 2022;12. [DOI: 10.1007/s13205-021-03105-y] [Reference Citation Analysis]
21 Li J, Yao S, Wang K, Lu Z, Su X, Li L, Yuan C, Feng J, Yan S, Kong B, Song K. Hypocrellin B-loaded, folate-conjugated polymeric micelle for intraperitoneal targeting of ovarian cancer in vitro and in vivo. Cancer Sci 2018;109:1958-69. [PMID: 29617063 DOI: 10.1111/cas.13605] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
22 Kost B, Brzeziński M, Socka M, Baśko M, Biela T. Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery Applications. Molecules 2020;25:E3404. [PMID: 32731371 DOI: 10.3390/molecules25153404] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
23 Alibolandi M, Sadeghi F, Sazmand SH, Shahrokhi SM, Seifi M, Hadizadeh F. Synthesis and self-assembly of biodegradable polyethylene glycol-poly (lactic acid) diblock copolymers as polymersomes for preparation of sustained release system of doxorubicin. Int J Pharm Investig 2015;5:134-41. [PMID: 26258054 DOI: 10.4103/2230-973X.160846] [Cited by in Crossref: 20] [Cited by in F6Publishing: 1] [Article Influence: 2.9] [Reference Citation Analysis]
24 Alyafee YA, Alaamery M, Bawazeer S, Almutairi MS, Alghamdi B, Alomran N, Sheereen A, Daghestani M, Massadeh S. Preparation of anastrozole loaded PEG-PLA nanoparticles: evaluation of apoptotic response of breast cancer cell lines. Int J Nanomedicine 2018;13:199-208. [PMID: 29343958 DOI: 10.2147/IJN.S151139] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
25 Kim HY, Ryu JH, Chu CW, Son GM, Jeong YI, Kwak TW, Kim DH, Chung CW, Rhee YH, Kang DH, Kim HW. Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene glycol)/poly(3-hydroxyoctanoate). Nanoscale Res Lett 2014;9:525. [PMID: 25288916 DOI: 10.1186/1556-276X-9-525] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
26 Duncan SA, Dixit S, Sahu R, Martin D, Baganizi DR, Nyairo E, Villinger F, Singh SR, Dennis VA. Prolonged Release and Functionality of Interleukin-10 Encapsulated within PLA-PEG Nanoparticles. Nanomaterials (Basel) 2019;9:E1074. [PMID: 31357440 DOI: 10.3390/nano9081074] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
27 Haggag YA, Matchett KB, Falconer RA, Isreb M, Jones J, Faheem A, McCarron P, El-Tanani M. Novel Ran-RCC1 Inhibitory Peptide-Loaded Nanoparticles Have Anti-Cancer Efficacy In Vitro and In Vivo. Cancers (Basel) 2019;11:E222. [PMID: 30769871 DOI: 10.3390/cancers11020222] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
28 Cruje C, Dunmore-Buyze PJ, Grolman E, Holdsworth DW, Gillies ER, Drangova M. PEG-modified gadolinium nanoparticles as contrast agents for in vivo micro-CT. Sci Rep 2021;11:16603. [PMID: 34400681 DOI: 10.1038/s41598-021-95716-x] [Reference Citation Analysis]
29 Massadeh S, Almohammed I, Barhoush E, Omer M, Aldhawi N, Almalik A, Alaamery M. Development of Epirubicin-Loaded Biocompatible Polymer PLA-PEG-PLA Nanoparticles: Synthesis, Characterization, Stability, and In Vitro Anticancerous Assessment. Polymers (Basel) 2021;13:1212. [PMID: 33918625 DOI: 10.3390/polym13081212] [Reference Citation Analysis]
30 Kumari P, Muddineti OS, Rompicharla SV, Ghanta P, B B N AK, Ghosh B, Biswas S. Cholesterol-conjugated poly(D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Drug Deliv 2017;24:209-23. [PMID: 28156164 DOI: 10.1080/10717544.2016.1245365] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 8.4] [Reference Citation Analysis]
31 Ghasemi R, Abdollahi M, Emamgholi Zadeh E, Khodabakhshi K, Badeli A, Bagheri H, Hosseinkhani S. mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Sci Rep 2018;8:9854. [PMID: 29959339 DOI: 10.1038/s41598-018-28092-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
32 Gupta D, Kumar M, Tyagi P, Kapoor S, Tyagi A, Barman TK, Kharbanda S, Kufe D, Singh H. Concomitant Delivery of Paclitaxel and NuBCP-9 peptide for synergistic enhancement of cancer therapy. Nanomedicine 2018;14:1301-13. [PMID: 29641982 DOI: 10.1016/j.nano.2018.03.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
33 Tomar L, Tyagi C, Kumar M, Kumar P, Singh H, Choonara YE, Pillay V. In vivo evaluation of a conjugated poly(lactide-ethylene glycol) nanoparticle depot formulation for prolonged insulin delivery in the diabetic rabbit model. Int J Nanomedicine 2013;8:505-20. [PMID: 23429428 DOI: 10.2147/IJN.S38011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 0.6] [Reference Citation Analysis]
34 Armstead AL, Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine 2011;6:3281-93. [PMID: 22228996 DOI: 10.2147/IJN.S27285] [Cited by in Crossref: 16] [Cited by in F6Publishing: 35] [Article Influence: 1.5] [Reference Citation Analysis]
35 Wang D, Taylor EW, Wang Y, Wan X, Zhang J. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. Int J Nanomedicine 2012;7:1711-21. [PMID: 22619522 DOI: 10.2147/IJN.S29341] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 0.7] [Reference Citation Analysis]
36 Crawford L, Higgins J, Putnam D. A Simple and Sensitive Method to Quantify Biodegradable Nanoparticle Biodistribution using Europium Chelates. Sci Rep 2015;5:13177. [PMID: 26346817 DOI: 10.1038/srep13177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
37 Zhou W, Wang Y, Jian J, Song S. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int J Nanomedicine 2013;8:3715-28. [PMID: 24106427 DOI: 10.2147/IJN.S51186] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
38 Salem HF, Ahmed SM, Hassaballah AE, Omar MM. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study. Drug Des Devel Ther 2015;9:3705-27. [PMID: 26229435 DOI: 10.2147/DDDT.S85302] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
39 Zhao G, Ge T, Yan Y, Shuai Q, Su WK. Highly Efficient Modular Construction of Functional Drug Delivery Platform Based on Amphiphilic Biodegradable Polymers via Click Chemistry. Int J Mol Sci 2021;22:10407. [PMID: 34638747 DOI: 10.3390/ijms221910407] [Reference Citation Analysis]
40 Md S, Alhakamy NA, Karim S, Gabr GA, Iqubal MK, Murshid SSA. Signaling Pathway Inhibitors, miRNA, and Nanocarrier-Based Pharmacotherapeutics for the Treatment of Lung Cancer: A Review. Pharmaceutics 2021;13:2120. [PMID: 34959401 DOI: 10.3390/pharmaceutics13122120] [Reference Citation Analysis]
41 Maslanka Figueroa S, Fleischmann D, Beck S, Goepferich A. Thermodynamic, Spatial and Methodological Considerations for the Manufacturing of Therapeutic Polymer Nanoparticles. Pharm Res 2020;37:59. [PMID: 32095934 DOI: 10.1007/s11095-020-2783-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
42 Mohamed EA, Zhao Y, Meshali MM, Remsberg CM, Borg TM, Foda AM, Takemoto JK, Sayre CL, Martinez SE, Davies NM, Forrest ML. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine. J Pharm Sci 2012;101:3787-98. [PMID: 22806441 DOI: 10.1002/jps.23265] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
43 Zhou QL, Chen ZY, Wang YX, Yang F, Lin Y, Liao YY. Ultrasound-mediated local drug and gene delivery using nanocarriers. Biomed Res Int 2014;2014:963891. [PMID: 25202710 DOI: 10.1155/2014/963891] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
44 Terzopoulou Z, Zamboulis A, Bikiaris DN, Valera MA, Mangas A. Synthesis, Properties, and Enzymatic Hydrolysis of Poly(lactic acid)-co-Poly(propylene adipate) Block Copolymers Prepared by Reactive Extrusion. Polymers (Basel) 2021;13:4121. [PMID: 34883625 DOI: 10.3390/polym13234121] [Reference Citation Analysis]
45 Bonartsev A, Yakovlev S, Boskhomdzhiev A, Zharkova I, Bagrov D, Myshkina V, Mahina T, Kharitonova E, Samsonova O, Zernov A, Zhuikov V, Efremov Y, Voinova V, Bonartseva G, Shaitan K. The terpolymer produced by Azotobacter chroococcum 7B: effect of surface properties on cell attachment. PLoS One 2013;8:e57200. [PMID: 23468935 DOI: 10.1371/journal.pone.0057200] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
46 Wu P, Zhu H, Zhuang Y, Sun X, Gu N. Combined Therapeutic Effects of 131I-Labeled and 5Fu-Loaded Multifunctional Nanoparticles in Colorectal Cancer. Int J Nanomedicine 2020;15:2777-87. [PMID: 32368054 DOI: 10.2147/IJN.S215137] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Zhang B, Jin K, Jiang T, Wang L, Shen S, Luo Z, Tuo Y, Liu X, Hu Y, Pang Z. Celecoxib normalizes the tumor microenvironment and enhances small nanotherapeutics delivery to A549 tumors in nude mice. Sci Rep 2017;7:10071. [PMID: 28855534 DOI: 10.1038/s41598-017-09520-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
48 Bonartsev AP, Yakovlev SG, Zharkova II, Boskhomdzhiev AP, Bagrov DV, Myshkina VL, Makhina TK, Kharitonova EP, Samsonova OV, Feofanov AV, Voinova VV, Zernov AL, Efremov YM, Bonartseva GA, Shaitan KV, Kirpichnikov MP. Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B. BMC Biochem 2013;14:12. [PMID: 23692611 DOI: 10.1186/1471-2091-14-12] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
49 Xu J, Zhao JH, Liu Y, Feng NP, Zhang YT. RGD-modified poly(D,L-lactic acid) nanoparticles enhance tumor targeting of oridonin. Int J Nanomedicine 2012;7:211-9. [PMID: 22275836 DOI: 10.2147/IJN.S27581] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.2] [Reference Citation Analysis]
50 Rokicka J, Wilpiszewska K, Janik J, Schmidt B, Nikiforov A, Volfson S. Multiblock Elastomers TPEAA and TPEEA: Physical Structure and Properties. Materials (Basel) 2021;14:7720. [PMID: 34947313 DOI: 10.3390/ma14247720] [Reference Citation Analysis]
51 Sahu R, Verma R, Dixit S, Igietseme JU, Black CM, Duncan S, Singh SR, Dennis VA. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles. Expert Rev Vaccines 2018;17:217-27. [PMID: 29382248 DOI: 10.1080/14760584.2018.1435279] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
52 Yang Z, Zhang L, Zhu H, Zhou K, Wang H, Wang Y, Su R, Guo D, Zhou L, Xu X, Song P, Zheng S, Xie H. Nanoparticle formulation of mycophenolate mofetil achieves enhanced efficacy against hepatocellular carcinoma by targeting tumour-associated fibroblast. J Cell Mol Med 2021;25:3511-23. [PMID: 33713546 DOI: 10.1111/jcmm.16434] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
53 Yang D, Luo W, Wang J, Zheng M, Liao XH, Zhang N, Lu W, Wang L, Chen AZ, Wu WG, Liu H, Wang SB, Zhou XZ, Lu KP. A novel controlled release formulation of the Pin1 inhibitor ATRA to improve liver cancer therapy by simultaneously blocking multiple cancer pathways. J Control Release 2018;269:405-22. [PMID: 29170140 DOI: 10.1016/j.jconrel.2017.11.031] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
54 Kong XB, Tang QY, Chen XY, Tu Y, Sun SZ, Sun ZL. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury. Neural Regen Res 2017;12:1003-8. [PMID: 28761436 DOI: 10.4103/1673-5374.208597] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 5.2] [Reference Citation Analysis]
55 Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein J Nanotechnol 2021;12:808-62. [PMID: 34476167 DOI: 10.3762/bjnano.12.64] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Chou CT, Shi SC, Chen CK. Sandwich-Structured, Hydrophobic, Nanocellulose-Reinforced Polyvinyl Alcohol as an Alternative Straw Material. Polymers (Basel) 2021;13:4447. [PMID: 34960998 DOI: 10.3390/polym13244447] [Reference Citation Analysis]
57 Thu HP, Nam NH, Quang BT, Son HA, Toan NL, Quang DT. In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLA-TPGS nanoparticles. Saudi Pharm J 2015;23:683-8. [PMID: 26702264 DOI: 10.1016/j.jsps.2015.02.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
58 Shalaby KS, Soliman ME, Bonacucina G, Cespi M, Palmieri GF, Sammour OA, El Shamy AA, Illum L, Casettari L. Nanoparticles Based on Linear and Star-Shaped Poly(Ethylene Glycol)-Poly(ε-Caprolactone) Copolymers for the Delivery of Antitubulin Drug. Pharm Res 2016;33:2010-24. [PMID: 27177721 DOI: 10.1007/s11095-016-1939-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
59 Cai Y, Guo L, Shen H, An X, Jiang H, Ji F, Niu Y. Degradability, bioactivity, and osteogenesis of biocomposite scaffolds of lithium-containing mesoporous bioglass and mPEG-PLGA-b-PLL copolymer. Int J Nanomedicine 2015;10:4125-36. [PMID: 26150718 DOI: 10.2147/IJN.S82945] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
60 Safwat MA, Mansour HF, Hussein AK, Abdelwahab S, Soliman GM. Polymeric micelles for the ocular delivery of triamcinolone acetonide: preparation and in vivo evaluation in a rabbit ocular inflammatory model. Drug Deliv 2020;27:1115-24. [PMID: 32720545 DOI: 10.1080/10717544.2020.1797241] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
61 Nanaki SG, Christodoulou E, Bikiaris ND, Kapourani A, Kontogiannopoulos KN, Vergkizi-Nikolakaki S, Barmpalexis P. Leflunomide Sustained Skin Delivery Based on Sulfobetaine-Modified Chitosan Nanoparticles Embedded in Biodegradable Polyesters Films. Polymers (Basel) 2021;13:960. [PMID: 33800966 DOI: 10.3390/polym13060960] [Reference Citation Analysis]