BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee JJ, Saiful Yazan L, Che Abdullah CA. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment. Int J Nanomedicine 2017;12:2373-84. [PMID: 28392694 DOI: 10.2147/IJN.S127329] [Cited by in Crossref: 37] [Cited by in F6Publishing: 13] [Article Influence: 7.4] [Reference Citation Analysis]
Number Citing Articles
1 Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
2 Khoshoei A, Ghasemy E, Poustchi F, Shahbazi MA, Maleki R. Engineering the pH-Sensitivity of the Graphene and Carbon Nanotube Based Nanomedicines in Smart Cancer Therapy by Grafting Trimetyl Chitosan. Pharm Res 2020;37:160. [PMID: 32747991 DOI: 10.1007/s11095-020-02881-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
3 Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021;610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Reference Citation Analysis]
4 Jayme CC, Pires AF, Fernandes DS, Bi H, Tedesco AC. DNA polymer films used as drug delivery systems to early-stage diagnose and treatment of breast cancer using 3D tumor spheroids as a model. Photodiagnosis Photodyn Ther 2021;:102575. [PMID: 34628073 DOI: 10.1016/j.pdpdt.2021.102575] [Reference Citation Analysis]
5 Pial MMH, Tomitaka A, Pala N, Roy U. Implantable Devices for the Treatment of Breast Cancer. JNT 2022;3:19-38. [DOI: 10.3390/jnt3010003] [Reference Citation Analysis]
6 Khaleseh F, Hemmati Azandaryani A, Fathian Kolahkaj F, Khazaei M, Derakhshandeh K. Enhancement of in vitro antitumour activity of epirubicin in HER2+ breast cancer cells using immunoliposome formulation. IET Nanobiotechnol 2021;15:257-65. [PMID: 34694666 DOI: 10.1049/nbt2.12012] [Reference Citation Analysis]
7 Vinhas R, Mendes R, Fernandes AR, Baptista PV. Nanoparticles-Emerging Potential for Managing Leukemia and Lymphoma. Front Bioeng Biotechnol. 2017;5:79. [PMID: 29326927 DOI: 10.3389/fbioe.2017.00079] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
8 Gao S, Cheng X, Li J. Lipid nanobubbles as an ultrasound-triggered artesunate delivery system for imaging-guided, tumor-targeted chemotherapy. Onco Targets Ther 2019;12:1841-50. [PMID: 30881036 DOI: 10.2147/OTT.S190208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
9 Duan X, Mu M, Yan J, Bai L, Zhong L, Zhu Y, Pan H, Zhang M, Shi J. Co-delivery of Aurora-A inhibitor XY-4 and Bcl-xl siRNA enhances antitumor efficacy for melanoma therapy. Int J Nanomedicine 2018;13:1443-56. [PMID: 29563798 DOI: 10.2147/IJN.S147759] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
10 Whitlow J, Pacelli S, Paul A. Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions. J Control Release 2017;261:62-86. [PMID: 28596105 DOI: 10.1016/j.jconrel.2017.05.033] [Cited by in Crossref: 56] [Cited by in F6Publishing: 38] [Article Influence: 11.2] [Reference Citation Analysis]
11 Dastjerd NT, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, Maniati M, Amri J, Samavarchi Tehrani S. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem Funct 2021. [PMID: 34904722 DOI: 10.1002/cbf.3676] [Reference Citation Analysis]
12 Ahmed A, Karami A, Sabouni R, Husseini GA, Paul V. pH and ultrasound dual-responsive drug delivery system based on PEG–folate-functionalized Iron-based metal–organic framework for targeted doxorubicin delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;626:127062. [DOI: 10.1016/j.colsurfa.2021.127062] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
13 Cerqueira M, Belmonte-reche E, Gallo J, Baltazar F, Bañobre-lópez M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022;14:506. [DOI: 10.3390/pharmaceutics14030506] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wiśniewski M, Czarnecka J, Bolibok P, Świdziński M, Roszek K. New Insight into the Fluorescence Quenching of Nitrogen-Containing Carbonaceous Quantum Dots-From Surface Chemistry to Biomedical Applications. Materials (Basel) 2021;14:2454. [PMID: 34065161 DOI: 10.3390/ma14092454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Falank C, Tasset AW, Farrell M, Harris S, Everill P, Marinkovic M, Reagan MR. Development of medical-grade, discrete, multi-walled carbon nanotubes as drug delivery molecules to enhance the treatment of hematological malignancies. Nanomedicine 2019;20:102025. [PMID: 31170511 DOI: 10.1016/j.nano.2019.102025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021;341:733-52. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
17 Baghbani-arani F, Sadat Shandiz SA. Combination of Cytochalasin H and zinc oxide nanoparticles in human breast cancer: an insight into apoptosis study. Biologia 2021;76:763-72. [DOI: 10.2478/s11756-020-00611-x] [Reference Citation Analysis]
18 Wei QY, Xu YM, Lau ATY. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers (Basel). 2020;12. [PMID: 32998391 DOI: 10.3390/cancers12102783] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
19 Awad NS, Paul V, AlSawaftah NM, Ter Haar G, Allen TM, Pitt WG, Husseini GA. Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacol Transl Sci 2021;4:589-612. [PMID: 33860189 DOI: 10.1021/acsptsci.0c00212] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Czarnecka J, Kwiatkowski M, Wiśniewski M, Roszek K. Protein Corona Hinders N-CQDs Oxidative Potential and Favors Their Application as Nanobiocatalytic System. Int J Mol Sci 2021;22:8136. [PMID: 34360901 DOI: 10.3390/ijms22158136] [Reference Citation Analysis]
21 Fatima I, Rahdar A, Sargazi S, Barani M, Hassanisaadi M, Thakur VK. Quantum Dots: Synthesis, Antibody Conjugation, and HER2-Receptor Targeting for Breast Cancer Therapy. J Funct Biomater 2021;12:75. [PMID: 34940554 DOI: 10.3390/jfb12040075] [Reference Citation Analysis]
22 Jamshidifar E, Eshrati Yeganeh F, Shayan M, Tavakkoli Yaraki M, Bourbour M, Moammeri A, Akbarzadeh I, Noorbazargan H, Hossein-Khannazer N. Super Magnetic Niosomal Nanocarrier as a New Approach for Treatment of Breast Cancer: A Case Study on SK-BR-3 and MDA-MB-231 Cell Lines. Int J Mol Sci 2021;22:7948. [PMID: 34360714 DOI: 10.3390/ijms22157948] [Reference Citation Analysis]
23 Woythe L, Tito NB, Albertazzi L. A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021;169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 15.0] [Reference Citation Analysis]
24 Rajawat S, Malik MM. In-vitro studies of colloidal silver against SK-mel-28 cancer cell line. Adv Nat Sci: Nanosci Nanotechnol 2020;11:035002. [DOI: 10.1088/2043-6254/ab9d22] [Reference Citation Analysis]
25 Oltolina F, Colangelo D, Miletto I, Clemente N, Miola M, Verné E, Prat M, Follenzi A. Tumor Targeting by Monoclonal Antibody Functionalized Magnetic Nanoparticles. Nanomaterials (Basel) 2019;9:E1575. [PMID: 31698869 DOI: 10.3390/nano9111575] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
26 Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine 2017;12:5879-92. [PMID: 28860754 DOI: 10.2147/IJN.S123437] [Cited by in Crossref: 57] [Cited by in F6Publishing: 22] [Article Influence: 11.4] [Reference Citation Analysis]
27 Sreeharsha N, Philip M, Krishna SS, Viswanad V, Sahu RK, Shiroorkar PN, Aasif AH, Fattepur S, Asdaq SMB, Nair AB, Attimarad M, Venugopala KN. Multifunctional Mesoporous Silica Nanoparticles for Oral Drug Delivery. Coatings 2022;12:358. [DOI: 10.3390/coatings12030358] [Reference Citation Analysis]
28 Taherian A, Esfandiari N, Rouhani S. Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nano 2021;12. [DOI: 10.1186/s12645-021-00086-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2022;145:112375. [PMID: 34863612 DOI: 10.1016/j.biopha.2021.112375] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]