BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine 2017;12:5879-92. [PMID: 28860754 DOI: 10.2147/IJN.S123437] [Cited by in Crossref: 57] [Cited by in F6Publishing: 72] [Article Influence: 11.4] [Reference Citation Analysis]
Number Citing Articles
1 Xu R, Sui J, Zhao M, Yang Y, Tong L, Liu Y, Sun Y, Fan Y, Liang J, Zhang X. Targeted inhibition of HER-2 positive breast cancer cells by trastuzumab functionalized pullulan-doxorubicin nanoparticles. Polymer Testing 2022;113:107669. [DOI: 10.1016/j.polymertesting.2022.107669] [Reference Citation Analysis]
2 Kumbhar P, Kole K, Khadake V, Marale P, Manjappa A, Nadaf S, Jadhav R, Patil A, Singh SK, Dua K, Jha NK, Disouza J, Patravale V. Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J Control Release 2022;349:812-30. [PMID: 35914614 DOI: 10.1016/j.jconrel.2022.07.039] [Reference Citation Analysis]
3 Liu Y, Li X, Pen R, Zuo W, Chen Y, Sun X, Gou J, Guo Q, Wen M, Li W, Yu S, Liu H, Huang M. Targeted delivery of irinotecan to colon cancer cells using epidermal growth factor receptor-conjugated liposomes. Biomed Eng Online 2022;21:53. [PMID: 35918704 DOI: 10.1186/s12938-022-01012-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Serda M, Malarz K, Korzuch J, Szubka M, Zubko M, Musioł R. In Situ Cellular Localization of Nonfluorescent [60]Fullerene Nanomaterial in MCF-7 Breast Cancer Cells. ACS Biomater Sci Eng 2022. [PMID: 35856645 DOI: 10.1021/acsbiomaterials.2c00542] [Reference Citation Analysis]
5 Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S. Nano-Based Theranostic Platforms for Breast Cancer: A Review of Latest Advancements. Bioengineering 2022;9:320. [DOI: 10.3390/bioengineering9070320] [Reference Citation Analysis]
6 Hu M, Zhang W, Chen W, Chen Y, Huang Q, Bao Q, Lin T, Wang L, Zhang S. Construction and Biological Evaluation of Multiple Modification Hollow Mesoporous Silicone Doxorubicin Nanodrug Delivery System. AAPS PharmSciTech 2022;23:180. [PMID: 35761120 DOI: 10.1208/s12249-022-02226-8] [Reference Citation Analysis]
7 Grilli F, Hajimohammadi Gohari P, Zou S. Characteristics of Graphene Oxide for Gene Transfection and Controlled Release in Breast Cancer Cells. Int J Mol Sci 2022;23:6802. [PMID: 35743245 DOI: 10.3390/ijms23126802] [Reference Citation Analysis]
8 Ahmad I, Khan MFA, Rahdar A, Hussain S, Tareen FK, Salim MW, Ajalli N, Amirzada MI, Khan A. Design and Evaluation of pH Sensitive PEG-Protamine Nanocomplex of Doxorubicin for Treatment of Breast Cancer. Polymers (Basel) 2022;14:2403. [PMID: 35745979 DOI: 10.3390/polym14122403] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. Nanoscale Res Lett 2022;17:56. [PMID: 35661270 DOI: 10.1186/s11671-022-03691-7] [Reference Citation Analysis]
10 Xie X, Lee J, Iwase T, Kai M, Ueno NT. Emerging drug targets for triple-negative breast cancer: A guided tour of the preclinical landscape. Expert Opin Ther Targets 2022. [PMID: 35574694 DOI: 10.1080/14728222.2022.2077188] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 An T, Yin H, Lu Y, Liu F. The Emerging Potential of Parthenolide Nanoformulations in Tumor Therapy. Drug Des Devel Ther 2022;16:1255-72. [PMID: 35517982 DOI: 10.2147/DDDT.S355059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zaib S, Areeba BS, Nehal Rana BS, Wattoo JI, Alsaab HO, Alzhrani RM, Awwad NS, Ibrahium HA, Khan I. Nanomedicines Targeting Heat Shock Protein 90 Gene Expression in the Therapy of Breast Cancer. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202104553] [Reference Citation Analysis]
13 Gan WW, Chan LW, Li W, Wong TW. Critical clinical gaps in cancer precision nanomedicine development. J Control Release 2022:S0168-3659(22)00190-0. [PMID: 35378214 DOI: 10.1016/j.jconrel.2022.03.055] [Reference Citation Analysis]
14 Tagde P, Najda A, Nagpal K, Kulkarni GT, Shah M, Ullah O, Balant S, Rahman MH. Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. IJMS 2022;23:2856. [DOI: 10.3390/ijms23052856] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Banthia P, Gambhir L, Sharma A, Daga D, Kapoor N, Chaudhary R, Sharma G. Nano to rescue: repository of nanocarriers for targeted drug delivery to curb breast cancer. 3 Biotech 2022;12:70. [PMID: 35223356 DOI: 10.1007/s13205-022-03121-6] [Reference Citation Analysis]
16 Melim C, Magalhães M, Santos AC, Campos EJ, Cabral C. Nanoparticles as phytochemical carriers for cancer treatment: News of the last decade. Expert Opin Drug Deliv 2022. [PMID: 35166619 DOI: 10.1080/17425247.2022.2041599] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Sadat SMA, Wuest M, Paiva IM, Munira S, Sarrami N, Sanaee F, Yang X, Paladino M, Binkhathlan Z, Karimi-Busheri F, Martin GR, Jirik FR, Murray D, Gamper AM, Hall DG, Weinfeld M, Lavasanifar A. Nano-Delivery of a Novel Inhibitor of Polynucleotide Kinase/Phosphatase (PNKP) for Targeted Sensitization of Colorectal Cancer to Radiation-Induced DNA Damage. Front Oncol 2021;11:772920. [PMID: 35004293 DOI: 10.3389/fonc.2021.772920] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Mishra N, Rana K, Seelam SD, Kumar R, Pandey V, Salimath BP, Agsar D. Characterization and Cytotoxicity of Pseudomonas Mediated Rhamnolipids Against Breast Cancer MDA-MB-231 Cell Line. Front Bioeng Biotechnol 2021;9:761266. [PMID: 34950641 DOI: 10.3389/fbioe.2021.761266] [Reference Citation Analysis]
19 Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, Subramaniyan V, Kokare C, Lum PT, Begum MY, Mani S, Meenakshi DU, Sathasivam KV, Fuloria NK. Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. Int J Nanomedicine 2021;16:7891-941. [PMID: 34880614 DOI: 10.2147/IJN.S328135] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
20 Yap KM, Sekar M, Wu YS, Gan SH, Rani NNIM, Seow LJ, Subramaniyan V, Fuloria NK, Fuloria S, Lum PT. Hesperidin and its aglycone hesperetin in breast cancer therapy: A review of recent developments and future prospects. Saudi J Biol Sci 2021;28:6730-47. [PMID: 34866972 DOI: 10.1016/j.sjbs.2021.07.046] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
21 Yuan M, Pei J, Li R, Tian L, He X, Li Y. CD40LG as a Prognostic Molecular Marker Regulates Tumor Microenvironment Through Immune Process in Breast Cancer. Int J Gen Med 2021;14:8833-46. [PMID: 34858051 DOI: 10.2147/IJGM.S336813] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021;16:2605-31. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Malviya R, Fuloria S, Verma S, Subramaniyan V, Sathasivam KV, Kumarasamy V, Hari Kumar D, Vellasamy S, Meenakshi DU, Yadav S, Sharma A, Fuloria NK. Commercial utilities and future perspective of nanomedicines. PeerJ 2021;9:e12392. [PMID: 34820175 DOI: 10.7717/peerj.12392] [Reference Citation Analysis]
24 Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021;:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Ganesan K, Wang Y, Gao F, Liu Q, Zhang C, Li P, Zhang J, Chen J. Targeting Engineered Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2021;13:1829. [PMID: 34834243 DOI: 10.3390/pharmaceutics13111829] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
26 Tonbul H, Sahin A, Tavukcuoglu E, Ultav G, Akbas S, Aktas Y, Esendaglı G, Capan Y. Folic acid decoration of mesoporous silica nanoparticles to increase cellular uptake and cytotoxic activity of doxorubicin in human breast cancer cells. Journal of Drug Delivery Science and Technology 2021;63:102535. [DOI: 10.1016/j.jddst.2021.102535] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021;173:306-30. [PMID: 33798642 DOI: 10.1016/j.addr.2021.03.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 19.0] [Reference Citation Analysis]
28 Rothbauer M, Bachmann BEM, Eilenberger C, Kratz SRA, Spitz S, Höll G, Ertl P. A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology. Micromachines (Basel) 2021;12:470. [PMID: 33919242 DOI: 10.3390/mi12050470] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zhou L, Lu R, Liu Q, Xiao B, Hai L, Guo L, Wu Y, Zheng Y. Two branched fructose modification improves tumor targeting delivery of liposomes to breast cancer in intro and in vivo. Journal of Drug Delivery Science and Technology 2021;61:102312. [DOI: 10.1016/j.jddst.2020.102312] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol. 2020;11:599965. [PMID: 33584277 DOI: 10.3389/fphar.2020.599965] [Cited by in Crossref: 1] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
31 Hu X, Dong M, Liang X, Liu Z, Li Q. Reactive Oxygen Species-Mediated Inflammation and Apoptosis in Hand-Foot Syndrome Induced by PEGylated Liposomal Doxorubicin. Int J Nanomedicine 2021;16:471-80. [PMID: 33500617 DOI: 10.2147/IJN.S280187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Guo P, Si M, Wu D, Xue HY, Hu W, Wong HL. Incorporation of docosahexaenoic acid (DHA) enhances nanodelivery of antiretroviral across the blood-brain barrier for treatment of HIV reservoir in brain. J Control Release 2020;328:696-709. [PMID: 33010335 DOI: 10.1016/j.jconrel.2020.09.050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
33 Wei QY, Xu YM, Lau ATY. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers (Basel). 2020;12. [PMID: 32998391 DOI: 10.3390/cancers12102783] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 18.0] [Reference Citation Analysis]
34 Dezianian S, Zargan J, Goudarzi HR, Haji Noormohamadi A, Mousavi M, Keshavarz Alikhani H, Johari B. In-vitro Study of Hottentotta Schach Crude Venom Anticancer Effects on MCF-7 and Vero Cell Lines. Iran J Pharm Res 2020;19:192-202. [PMID: 32922480 DOI: 10.22037/ijpr.2020.1100957] [Reference Citation Analysis]
35 Guo P, Xue HY, Buttaro BA, Tran NT, Wong HL. Enhanced eradication of intracellular and biofilm-residing methicillin-resistant Staphylococcus aureus (MRSA) reservoirs with hybrid nanoparticles delivering rifampicin. Int J Pharm 2020;589:119784. [PMID: 32877731 DOI: 10.1016/j.ijpharm.2020.119784] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
36 Saravanan M, Vahidi H, Medina Cruz D, Vernet-Crua A, Mostafavi E, Stelmach R, Webster TJ, Mahjoub MA, Rashedi M, Barabadi H. Emerging Antineoplastic Biogenic Gold Nanomaterials for Breast Cancer Therapeutics: A Systematic Review. Int J Nanomedicine 2020;15:3577-95. [PMID: 32547015 DOI: 10.2147/IJN.S240293] [Cited by in Crossref: 16] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
37 Guo P, Buttaro BA, Xue HY, Tran NT, Wong HL. Lipid-polymer hybrid nanoparticles carrying linezolid improve treatment of methicillin-resistant Staphylococcus aureus (MRSA) harbored inside bone cells and biofilms. Eur J Pharm Biopharm 2020;151:189-98. [PMID: 32335285 DOI: 10.1016/j.ejpb.2020.04.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
38 Kucharczyk K, Florczak A, Deptuch T, Penderecka K, Jastrzebska K, Mackiewicz A, Dams-Kozlowska H. Drug affinity and targeted delivery: double functionalization of silk spheres for controlled doxorubicin delivery into Her2-positive cancer cells. J Nanobiotechnology 2020;18:56. [PMID: 32228620 DOI: 10.1186/s12951-020-00609-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
39 Helal-Neto E, Barros AODS, Saldanha-Gama R, Brandão-Costa R, Alencar LMR, Santos CCD, Martínez-Máñez R, Ricci-Junior E, Alexis F, Morandi V, Barja-Fidalgo C, Santos-Oliveira R. Molecular and Cellular Risk Assessment of Healthy Human Cells and Cancer Human Cells Exposed to Nanoparticles. Int J Mol Sci 2019;21:E230. [PMID: 31905708 DOI: 10.3390/ijms21010230] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
40 Zhong Y, Su T, Shi Q, Feng Y, Tao Z, Huang Q, Li L, Hu L, Li S, Tan H, Liu S, Yang H. Co-Administration Of iRGD Enhances Tumor-Targeted Delivery And Anti-Tumor Effects Of Paclitaxel-Loaded PLGA Nanoparticles For Colorectal Cancer Treatment. Int J Nanomedicine 2019;14:8543-60. [PMID: 31802868 DOI: 10.2147/IJN.S219820] [Cited by in Crossref: 16] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
41 Al-Hatamleh MAI, Ahmad S, Boer JC, Lim J, Chen X, Plebanski M, Mohamud R. A Perspective Review on the Role of Nanomedicine in the Modulation of TNF-TNFR2 Axis in Breast Cancer Immunotherapy. J Oncol 2019;2019:6313242. [PMID: 31239840 DOI: 10.1155/2019/6313242] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
42 Lara-Cruz C, Jiménez-Salazar JE, Arteaga M, Arredondo M, Ramón-Gallegos E, Batina N, Damián-Matsumura P. Gold nanoparticle uptake is enhanced by estradiol in MCF-7 breast cancer cells. Int J Nanomedicine 2019;14:2705-18. [PMID: 31118607 DOI: 10.2147/IJN.S196683] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
43 Franco MS, Roque MC, Oliveira MC. Short and Long-Term Effects of the Exposure of Breast Cancer Cell Lines to Different Ratios of Free or Co-Encapsulated Liposomal Paclitaxel and Doxorubicin. Pharmaceutics 2019;11:E178. [PMID: 30979090 DOI: 10.3390/pharmaceutics11040178] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
44 Truffi M, Mazzucchelli S, Bonizzi A, Sorrentino L, Allevi R, Vanna R, Morasso C, Corsi F. Nano-Strategies to Target Breast Cancer-Associated Fibroblasts: Rearranging the Tumor Microenvironment to Achieve Antitumor Efficacy. Int J Mol Sci 2019;20:E1263. [PMID: 30871158 DOI: 10.3390/ijms20061263] [Cited by in Crossref: 29] [Cited by in F6Publishing: 43] [Article Influence: 9.7] [Reference Citation Analysis]
45 Biagiotti G, Pisaneschi F, Gammon ST, Machetti F, Ligi MC, Giambastiani G, Tuci G, Powell E, Piwnica-Worms H, Pranzini E, Paoli P, Cicchi S, Piwnica-Worms D. Multiwalled Carbon Nanotubes for Combination Therapy: a Biodistribution and Efficacy Pilot Study. J Mater Chem B 2019;7:2678-87. [PMID: 31073405 DOI: 10.1039/C8TB03299H] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
46 Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer (Dove Med Press) 2019;11:115-35. [PMID: 30881110 DOI: 10.2147/BCTT.S189224] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
47 Liu X, Jiang J, Chan R, Ji Y, Lu J, Liao YP, Okene M, Lin J, Lin P, Chang CH, Wang X, Tang I, Zheng E, Qiu W, Wainberg ZA, Nel AE, Meng H. Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS Nano 2019;13:38-53. [PMID: 30525443 DOI: 10.1021/acsnano.8b06164] [Cited by in Crossref: 46] [Cited by in F6Publishing: 51] [Article Influence: 15.3] [Reference Citation Analysis]
48 Truffi M, Colombo M, Sorrentino L, Pandolfi L, Mazzucchelli S, Pappalardo F, Pacini C, Allevi R, Bonizzi A, Corsi F, Prosperi D. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci Rep 2018;8:6563. [PMID: 29700387 DOI: 10.1038/s41598-018-24968-x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 41] [Article Influence: 7.5] [Reference Citation Analysis]
49 Luebbert CC, Clarke TM, Pointet R, Frahm GE, Tam S, Lorbetskie B, Sauvé S, Johnston MJW. Nanoparticle size and production efficiency are affected by the presence of fatty acids during albumin nanoparticle fabrication. PLoS One 2017;12:e0189814. [PMID: 29281685 DOI: 10.1371/journal.pone.0189814] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]