BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bagchi S, Chhibber T, Lahooti B, Verma A, Borse V, Jayant RD. In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des Devel Ther 2019;13:3591-605. [PMID: 31695329 DOI: 10.2147/DDDT.S218708] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Bhalerao A, Sivandzade F, Archie SR, Chowdhury EA, Noorani B, Cucullo L. In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 2020;17:22. [PMID: 32178700 DOI: 10.1186/s12987-020-00183-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
2 Kouhi A, Pachipulusu V, Kapenstein T, Hu P, Epstein AL, Khawli LA. Brain Disposition of Antibody-Based Therapeutics: Dogma, Approaches and Perspectives. Int J Mol Sci 2021;22:6442. [PMID: 34208575 DOI: 10.3390/ijms22126442] [Reference Citation Analysis]
3 Raut B, Chen LJ, Hori T, Kaji H. An Open-Source Add-On EVOM® Device for Real-Time Transepithelial/Endothelial Electrical Resistance Measurements in Multiple Transwell Samples. Micromachines (Basel) 2021;12:282. [PMID: 33800233 DOI: 10.3390/mi12030282] [Reference Citation Analysis]
4 Hanafy AS, Dietrich D, Fricker G, Lamprecht A. Blood-brain barrier models: Rationale for selection. Adv Drug Deliv Rev 2021;176:113859. [PMID: 34246710 DOI: 10.1016/j.addr.2021.113859] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
5 Pauwels MJ, Vandendriessche C, Vandenbroucke RE. Special delEVery: Extracellular Vesicles as Promising Delivery Platform to the Brain. Biomedicines 2021;9:1734. [PMID: 34829963 DOI: 10.3390/biomedicines9111734] [Reference Citation Analysis]
6 Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021;13:1542. [PMID: 34683835 DOI: 10.3390/pharmaceutics13101542] [Reference Citation Analysis]
7 Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. Nanomaterials (Basel) 2021;11:2632. [PMID: 34685073 DOI: 10.3390/nano11102632] [Reference Citation Analysis]
8 Nhung NT, Duong N, Phung HTT, Vo QV, Tam NM. In silico screening of potential β-secretase (BACE1) inhibitors from VIETHERB database. J Mol Model 2022;28. [DOI: 10.1007/s00894-022-05051-9] [Reference Citation Analysis]
9 Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Reference Citation Analysis]
10 Chong LC, Gandhi G, Lee JM, Yeo WWY, Choi SB. Drug Discovery of Spinal Muscular Atrophy (SMA) from the Computational Perspective: A Comprehensive Review. Int J Mol Sci 2021;22:8962. [PMID: 34445667 DOI: 10.3390/ijms22168962] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Moya ELJ, Vandenhaute E, Rizzi E, Boucau MC, Hachani J, Maubon N, Gosselet F, Dehouck MP. Miniaturization and Automation of a Human In Vitro Blood-Brain Barrier Model for the High-Throughput Screening of Compounds in the Early Stage of Drug Discovery. Pharmaceutics 2021;13:892. [PMID: 34208550 DOI: 10.3390/pharmaceutics13060892] [Reference Citation Analysis]
12 Pamies D, Zurich MG, Hartung T. Organotypic Models to Study Human Glioblastoma: Studying the Beast in Its Ecosystem. iScience 2020;23:101633. [PMID: 33103073 DOI: 10.1016/j.isci.2020.101633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Thammasit P, Tharinjaroen CS, Tragoolpua Y, Rickerts V, Georgieva R, Bäumler H, Tragoolpua K. Targeted Propolis-Loaded Poly (Butyl) Cyanoacrylate Nanoparticles: An Alternative Drug Delivery Tool for the Treatment of Cryptococcal Meningitis. Front Pharmacol 2021;12:723727. [PMID: 34489710 DOI: 10.3389/fphar.2021.723727] [Reference Citation Analysis]
14 Herr DW. The Future of Neurotoxicology: A Neuroelectrophysiological Viewpoint. Front Toxicol 2021;3:1. [PMID: 34966904 DOI: 10.3389/ftox.2021.729788] [Reference Citation Analysis]
15 Ray RM, Hansen AH, Taskova M, Jandl B, Hansen J, Soemardy C, Morris KV, Astakhova K. Enhanced target cell specificity and uptake of lipid nanoparticles using RNA aptamers and peptides. Beilstein J Org Chem 2021;17:891-907. [PMID: 33981364 DOI: 10.3762/bjoc.17.75] [Reference Citation Analysis]
16 Odegaard KE, Chand S, Wheeler S, Tiwari S, Flores A, Hernandez J, Savine M, Gowen A, Pendyala G, Yelamanchili SV. Role of Extracellular Vesicles in Substance Abuse and HIV-Related Neurological Pathologies. Int J Mol Sci 2020;21:E6765. [PMID: 32942668 DOI: 10.3390/ijms21186765] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Pantaleão SQ, Fernandes PO, Gonçalves JE, Maltarollo VG, Honorio KM. Recent Advances in the Prediction of Pharmacokinetics Properties in Drug Design Studies: A Review. ChemMedChem 2021. [PMID: 34655454 DOI: 10.1002/cmdc.202100542] [Reference Citation Analysis]
18 El-Mezayen NS, Abd El Moneim RA, El-Rewini SH. Vitamin B12 as a Cholinergic System Modulator and Blood Brain Barrier Integrity Restorer in Alzheimer's Disease. Eur J Pharm Sci 2022;:106201. [PMID: 35523375 DOI: 10.1016/j.ejps.2022.106201] [Reference Citation Analysis]
19 Sohn E, Kim YJ, Kim JH, Jeong SJ. Ficus erecta Thunb. Leaves Ameliorate Cognitive Deficit and Neuronal Damage in a Mouse Model of Amyloid-β-Induced Alzheimer's Disease. Front Pharmacol 2021;12:607403. [PMID: 33935701 DOI: 10.3389/fphar.2021.607403] [Reference Citation Analysis]
20 de Lange ECM, Hammarlund Udenaes M. Understanding the Blood-Brain Barrier and Beyond: Challenges and Opportunities for Novel CNS Therapeutics. Clin Pharmacol Ther 2022;111:758-73. [PMID: 35220577 DOI: 10.1002/cpt.2545] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Kunkeaw T, Suttisansanee U, Trachootham D, Karinchai J, Chantong B, Potikanond S, Inthachat W, Pitchakarn P, Temviriyanukul P. Diplazium esculentum (Retz.) Sw. reduces BACE-1 activities and amyloid peptides accumulation in Drosophila models of Alzheimer's disease. Sci Rep 2021;11:23796. [PMID: 34893659 DOI: 10.1038/s41598-021-03142-w] [Reference Citation Analysis]
22 Zou Z, Wen S, Li Y, An J, Wu Q, Tong L, Mei X, Tian H, Wu C. Novel lactoferrin-functionalized manganese-doped silica hollow mesoporous nanoparticles loaded with resveratrol for the treatment of ischemic stroke. Materials Today Advances 2022;15:100262. [DOI: 10.1016/j.mtadv.2022.100262] [Reference Citation Analysis]
23 DePalma TJ, Sivakumar H, Skardal A. Strategies for developing complex multi-component in vitro tumor models: Highlights in glioblastoma. Adv Drug Deliv Rev 2022;180:114067. [PMID: 34822927 DOI: 10.1016/j.addr.2021.114067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 de Oliveira ECL, da Costa KS, Taube PS, Lima AH, Junior CDSDS. Biological Membrane-Penetrating Peptides: Computational Prediction and Applications. Front Cell Infect Microbiol 2022;12:838259. [DOI: 10.3389/fcimb.2022.838259] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
25 Gong J, Holt MG, Hoet PHM, Ghosh M. Neurotoxicity of four frequently used nanoparticles: a systematic review to reveal the missing data. Arch Toxicol. [DOI: 10.1007/s00204-022-03233-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Winkelman MA, Kim DY, Kakarla S, Grath A, Silvia N, Dai G. Interstitial flow enhances the formation, connectivity, and function of 3D brain microvascular networks generated within a microfluidic device. Lab Chip 2021;22:170-92. [PMID: 34881385 DOI: 10.1039/d1lc00605c] [Reference Citation Analysis]
27 Mantecón-Oria M, Diban N, Berciano MT, Rivero MJ, David O, Lafarga M, Tapia O, Urtiaga A. Hollow Fiber Membranes of PCL and PCL/Graphene as Scaffolds with Potential to Develop In Vitro Blood-Brain Barrier Models. Membranes (Basel) 2020;10:E161. [PMID: 32708027 DOI: 10.3390/membranes10080161] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Sánchez-Dengra B, Gonzalez-Alvarez I, Bermejo M, Gonzalez-Alvarez M. Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Brain Levels of Drug in Rat. Pharmaceutics 2021;13:1402. [PMID: 34575476 DOI: 10.3390/pharmaceutics13091402] [Reference Citation Analysis]
29 Rossi M, Petralla S, Protti M, Baiula M, Kobrlova T, Soukup O, Spampinato SM, Mercolini L, Monti B, Bolognesi ML. α-Linolenic Acid-Valproic Acid Conjugates: Toward Single-Molecule Polypharmacology for Multiple Sclerosis. ACS Med Chem Lett 2020;11:2406-13. [PMID: 33329762 DOI: 10.1021/acsmedchemlett.0c00375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Guo Z, Zhang P, Chakraborty S, Chetwynd AJ, Abdolahpur Monikh F, Stark C, Ali-Boucetta H, Wilson S, Lynch I, Valsami-Jones E. Biotransformation modulates the penetration of metallic nanomaterials across an artificial blood-brain barrier model. Proc Natl Acad Sci U S A 2021;118:e2105245118. [PMID: 34260400 DOI: 10.1073/pnas.2105245118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Alsenan S, Al-Turaiki I, Hafez A. A deep learning approach to predict blood-brain barrier permeability. PeerJ Comput Sci 2021;7:e515. [PMID: 34179448 DOI: 10.7717/peerj-cs.515] [Reference Citation Analysis]
32 Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021;15:630016. [PMID: 33613188 DOI: 10.3389/fnins.2021.630016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
33 Duong DD, Kwak J, Song HS, Lee NY. Construction of microfluidic blood–brain barrier model assisted by 3D coculture on cellulose fiber. Microsyst Technol 2021;27:3917-26. [DOI: 10.1007/s00542-020-05197-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Aryal R, Patabendige A. Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes? Open Biol 2021;11:200396. [PMID: 33878948 DOI: 10.1098/rsob.200396] [Reference Citation Analysis]
35 Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021;169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]