BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wáng YX, Idée JM. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 2017;7:88-122. [PMID: 28275562 DOI: 10.21037/qims.2017.02.09] [Cited by in Crossref: 104] [Cited by in F6Publishing: 101] [Article Influence: 20.8] [Reference Citation Analysis]
Number Citing Articles
1 Hameed S, Chen H, Irfan M, Bajwa SZ, Khan WS, Baig SM, Dai Z. Fluorescence Guided Sentinel Lymph Node Mapping: From Current Molecular Probes to Future Multimodal Nanoprobes. Bioconjugate Chem 2019;30:13-28. [DOI: 10.1021/acs.bioconjchem.8b00812] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
2 Katsuki S, Matoba T, Koga JI, Nakano K, Egashira K. Anti-inflammatory Nanomedicine for Cardiovascular Disease. Front Cardiovasc Med 2017;4:87. [PMID: 29312961 DOI: 10.3389/fcvm.2017.00087] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
3 Nie Y, Rui Y, Miao C, Li Q, Hu F, Gu H. A stable USPIO capable for MR lymphography with ultra-low effective dosage. Nanomedicine 2020;29:102233. [PMID: 32522710 DOI: 10.1016/j.nano.2020.102233] [Reference Citation Analysis]
4 Dadfar SMR, Pourmahdian S, Tehranchi MM, Dadfar SM. Design and fabrication of novel core-shell nanoparticles for theranostic applications. Colloid Polym Sci 2020;298:1433-42. [DOI: 10.1007/s00396-020-04731-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhang W, Gaikwad H, Groman EV, Purev E, Simberg D, Wang G. Highly aminated iron oxide nanoworms for simultaneous manufacturing and labeling of chimeric antigen receptor T cells. J Magn Magn Mater 2022;541:168480. [PMID: 34720339 DOI: 10.1016/j.jmmm.2021.168480] [Reference Citation Analysis]
6 Akakuru OU, Xu C, Liu C, Li Z, Xing J, Pan C, Li Y, Nosike EI, Zhang Z, Iqbal ZM, Zheng J, Wu A. Metal-Free Organo-Theranostic Nanosystem with High Nitroxide Stability and Loading for Image-Guided Targeted Tumor Therapy. ACS Nano 2021;15:3079-97. [PMID: 33464053 DOI: 10.1021/acsnano.0c09590] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
7 Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities. Int J Nanomedicine 2020;15:1437-56. [PMID: 32184597 DOI: 10.2147/IJN.S236927] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
8 Hsiao YP, Huang CH, Lin YC, Jan TR. Systemic exposure to a single dose of ferucarbotran aggravates neuroinflammation in a murine model of experimental autoimmune encephalomyelitis. Int J Nanomedicine 2019;14:1229-40. [PMID: 30863056 DOI: 10.2147/IJN.S189327] [Reference Citation Analysis]
9 Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics 2021;13:943. [PMID: 34202604 DOI: 10.3390/pharmaceutics13070943] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Balk M, Haus T, Band J, Unterweger H, Schreiber E, Friedrich RP, Alexiou C, Gostian AO. Cellular SPION Uptake and Toxicity in Various Head and Neck Cancer Cell Lines. Nanomaterials (Basel) 2021;11:726. [PMID: 33805818 DOI: 10.3390/nano11030726] [Reference Citation Analysis]
11 Kremen TJ, Bez M, Sheyn D, Ben-david S, Da X, Tawackoli W, Wagner S, Gazit D, Pelled G. In Vivo Imaging of Exogenous Progenitor Cells in Tendon Regeneration via Superparamagnetic Iron Oxide Particles. Am J Sports Med 2019;47:2737-44. [DOI: 10.1177/0363546519861080] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
12 Husain SF, Lam RWM, Hu T, Ng MWF, Liau ZQG, Nagata K, Khanna S, Lam Y, Bhakoo K, Ho RCM, Wong HK. Locating the Site of Neuropathic Pain In Vivo Using MMP-12-Targeted Magnetic Nanoparticles. Pain Res Manag 2019;2019:9394715. [PMID: 30956741 DOI: 10.1155/2019/9394715] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
13 Chen Y, Ding X, Zhang Y, Natalia A, Sun X, Wang Z, Shao H. Design and synthesis of magnetic nanoparticles for biomedical diagnostics. Quant Imaging Med Surg 2018;8:957-70. [PMID: 30505724 DOI: 10.21037/qims.2018.10.07] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
14 Liu Y, Lu T, Wang C, Li H, Xu K, Li P. Intravital assessment of angioarchitecture in rat hepatocellular nodules using in vivo fluorescent microscopy. Quant Imaging Med Surg 2019;9:1047-55. [PMID: 31367558 DOI: 10.21037/qims.2019.06.11] [Reference Citation Analysis]
15 Caroli A, Remuzzi A, Lerman LO. Basic principles and new advances in kidney imaging. Kidney Int 2021:S0085-2538(21)00477-4. [PMID: 33984338 DOI: 10.1016/j.kint.2021.04.032] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Popescu RC, Andronescu E, Vasile BS. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. Nanomaterials (Basel) 2019;9:E1791. [PMID: 31888236 DOI: 10.3390/nano9121791] [Cited by in Crossref: 31] [Cited by in F6Publishing: 13] [Article Influence: 10.3] [Reference Citation Analysis]
17 Suciu M, Ionescu CM, Ciorita A, Tripon SC, Nica D, Al-Salami H, Barbu-Tudoran L. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. Beilstein J Nanotechnol 2020;11:1092-109. [PMID: 32802712 DOI: 10.3762/bjnano.11.94] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
18 Yi G, Hong SH, Son J, Yoo J, Park C, Choi Y, Koo H. Recent advances in nanoparticle carriers for photodynamic therapy. Quant Imaging Med Surg 2018;8:433-43. [PMID: 29928608 DOI: 10.21037/qims.2018.05.04] [Cited by in Crossref: 45] [Cited by in F6Publishing: 32] [Article Influence: 11.3] [Reference Citation Analysis]
19 Sánchez-Cabezas S, Montes-Robles R, Gallo J, Sancenón F, Martínez-Máñez R. Combining magnetic hyperthermia and dual T1/T2 MR imaging using highly versatile iron oxide nanoparticles. Dalton Trans 2019;48:3883-92. [PMID: 30839027 DOI: 10.1039/c8dt04685a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 5.7] [Reference Citation Analysis]
20 Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2021;18:205-27. [PMID: 32969740 DOI: 10.1080/17425247.2021.1828339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
21 Elkhenany H, Abd Elkodous M, Ghoneim NI, Ahmed TA, Ahmed SM, Mohamed IK, El-Badri N. Comparison of different uncoated and starch-coated superparamagnetic iron oxide nanoparticles: Implications for stem cell tracking. Int J Biol Macromol 2020;143:763-74. [PMID: 31626822 DOI: 10.1016/j.ijbiomac.2019.10.031] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
22 Reifenrath J, Janßen HC, Warwas DP, Kietzmann M, Behrens P, Willbold E, Fedchenko M, Angrisani N. Implant-based direction of magnetic nanoporous silica nanoparticles - influence of macrophage depletion and infection. Nanomedicine 2020;30:102289. [PMID: 32861030 DOI: 10.1016/j.nano.2020.102289] [Reference Citation Analysis]
23 Billings C, Langley M, Warrington G, Mashali F, Johnson JA. Magnetic Particle Imaging: Current and Future Applications, Magnetic Nanoparticle Synthesis Methods and Safety Measures. Int J Mol Sci 2021;22:7651. [PMID: 34299271 DOI: 10.3390/ijms22147651] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Modak M, Bobbala S, Lescott C, Liu Y, Nandwana V, Dravid VP, Scott EA. Magnetic Nanostructure-Loaded Bicontinuous Nanospheres Support Multicargo Intracellular Delivery and Oxidation-Responsive Morphological Transitions. ACS Appl Mater Interfaces 2020;12:55584-95. [DOI: 10.1021/acsami.0c15920] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
25 Wáng YXJ, Wang X, Wu P, Wang Y, Chen W, Chen H, Li J. Topics on quantitative liver magnetic resonance imaging. Quant Imaging Med Surg 2019;9:1840-90. [PMID: 31867237 DOI: 10.21037/qims.2019.09.18] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
26 Zengin A, Sutthavas P, van Rijt S. Inorganic nanoparticle-based biomaterials for regenerative medicine. Nanostructured Biomaterials for Regenerative Medicine. Elsevier; 2020. pp. 293-312. [DOI: 10.1016/b978-0-08-102594-9.00011-5] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Muehler MR, Rendell VR, Bergmann LL, Winslow ER, Reeder SB. Ferumoxytol-enhanced MR imaging for differentiating intrapancreatic splenules from other tumors. Abdom Radiol (NY) 2021;46:2003-13. [PMID: 33377995 DOI: 10.1007/s00261-020-02883-y] [Reference Citation Analysis]
28 Yin J, Yao D, Yin G, Huang Z, Pu X. Peptide-Decorated Ultrasmall Superparamagnetic Nanoparticles as Active Targeting MRI Contrast Agents for Ovarian Tumors. ACS Appl Mater Interfaces 2019;11:41038-50. [DOI: 10.1021/acsami.9b14394] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
29 Dhas N, Kudarha R, Pandey A, Nikam AN, Sharma S, Singh A, Garkal A, Hariharan K, Singh A, Bangar P, Yadhav D, Parikh D, Sawant K, Mutalik S, Garg N, Mehta T. Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release 2021;333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
30 Oleksa V, Bernátová I, Patsula V, Líšková S, Bališ P, Radošinská J, Mičurová A, Kluknavský M, Jasenovec T, Radošinská D, Macková H, Horák D. Poly(ethylene glycol)-Alendronate-Coated Magnetite Nanoparticles Do Not Alter Cardiovascular Functions and Red Blood Cells' Properties in Hypertensive Rats. Nanomaterials (Basel) 2021;11:1238. [PMID: 34067225 DOI: 10.3390/nano11051238] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Di Corato R, Aloisi A, Rella S, Greneche J, Pugliese G, Pellegrino T, Malitesta C, Rinaldi R. Maghemite Nanoparticles with Enhanced Magnetic Properties: One-Pot Preparation and Ultrastable Dextran Shell. ACS Appl Mater Interfaces 2018;10:20271-80. [DOI: 10.1021/acsami.7b18411] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
32 Min KH, Lee HJ, Lee SC, Park K. Biomineralized hybrid nanoparticles for imaging and therapy of cancers. Quant Imaging Med Surg 2018;8:694-708. [PMID: 30211036 DOI: 10.21037/qims.2018.08.04] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Kalyane D, Kumar N, Anup N, Rajpoot K, Maheshwari R, Sengupta P, Kalia K, Tekade RK. Recent advancements and future submissions of silica core-shell nanoparticles. Int J Pharm 2021;609:121173. [PMID: 34627997 DOI: 10.1016/j.ijpharm.2021.121173] [Reference Citation Analysis]
34 Dutta B, Shetake NG, Gawali SL, Barick B, Barick K, Babu P, Pandey B, Priyadarsini K, Hassan P. PEG mediated shape-selective synthesis of cubic Fe3O4 nanoparticles for cancer therapeutics. Journal of Alloys and Compounds 2018;737:347-55. [DOI: 10.1016/j.jallcom.2017.12.028] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
35 Luo S, Ma C, Zhu MQ, Ju WN, Yang Y, Wang X. Application of Iron Oxide Nanoparticles in the Diagnosis and Treatment of Neurodegenerative Diseases With Emphasis on Alzheimer's Disease. Front Cell Neurosci 2020;14:21. [PMID: 32184709 DOI: 10.3389/fncel.2020.00021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
36 Riberdy V, Litvack M, Stirrat E, Couch M, Post M, Santyr GE. Hyperpolarized 129 Xe imaging of embryonic stem cell-derived alveolar-like macrophages in rat lungs: proof-of-concept study using superparamagnetic iron oxide nanoparticles. Magn Reson Med 2020;83:1356-67. [PMID: 31556154 DOI: 10.1002/mrm.27999] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 Sugiyama S, Iwai T, Baba J, Oguri S, Izumi T, Sekino M, Kusakabe M, Mitsudo K. MR lymphography with superparamagnetic iron oxide for sentinel lymph node mapping of N0 early oral cancer: A pilot study. Dentomaxillofac Radiol 2021;50:20200333. [PMID: 33180632 DOI: 10.1259/dmfr.20200333] [Reference Citation Analysis]
38 Mirzaei N, Katsarelias D, Zaar P, Jalnefjord O, Johansson I, Leonhardt H, Wärnberg F, Olofsson Bagge R. Sentinel lymph node localization and staging with a low-dose of superparamagnetic iron oxide (SPIO) enhanced MRI and magnetometer in patients with cutaneous melanoma of the extremity - The MAGMEN feasibility study. Eur J Surg Oncol 2022:S0748-7983(21)01439-6. [PMID: 35000820 DOI: 10.1016/j.ejso.2021.12.467] [Reference Citation Analysis]
39 Rahdar A, Beyzaei H, Saadat M, Yu X, Trant JF. Synthesis, physical characterization, and antifungal and antibacterial activities of oleic acid capped nanomagnetite and cobalt-doped nanomagnetite. Can J Chem 2020;98:34-9. [DOI: 10.1139/cjc-2019-0268] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
40 Ma DJ, Lim MS, Park UC, Park JB, Ji SY, Yu HG. Magnetic Iron Oxide Nanoparticle Labeling of Photoreceptor Precursors for Magnetic Resonance Imaging. Tissue Eng Part C Methods 2019;25:532-42. [PMID: 31418341 DOI: 10.1089/ten.TEC.2019.0136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
41 Ou Y, Wen X, Bardhan R. Cancer Immunoimaging with Smart Nanoparticles. Trends in Biotechnology 2020;38:388-403. [DOI: 10.1016/j.tibtech.2019.11.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
42 Wáng YXJ, Zhang L, Zhao L, He J, Zeng X, Liu H, Yang Y, Ding S, Xu Z, He Y, Yang L, Sun L, Mu K, Wang B, Xu X, Ji Z, Liu J, Fang J, Hou R, Fan F, Peng G, Zhu Y, Ju S, Poon WS. Elderly population have a decreased aneurysmal subarachnoid hemorrhage incidence rate than Middle aged population: a descriptive analysis of 8,144 cases in mainland China. British Journal of Neurosurgery 2018;32:165-71. [DOI: 10.1080/02688697.2018.1426724] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
43 Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. Nanomaterials (Basel) 2021;11:3432. [PMID: 34947781 DOI: 10.3390/nano11123432] [Reference Citation Analysis]
44 Joo J. Diagnostic and Therapeutic Nanomedicine. Adv Exp Med Biol 2021;1310:401-47. [PMID: 33834444 DOI: 10.1007/978-981-33-6064-8_15] [Reference Citation Analysis]
45 Zhang Z, Wells CJR, King AM, Bear JC, Davies GL, Williams GR. pH-Responsive nanocomposite fibres allowing MRI monitoring of drug release. J Mater Chem B 2020;8:7264-74. [PMID: 32642748 DOI: 10.1039/d0tb01033b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
46 Askri D, Ouni S, Galai S, Arnaud J, Chovelon B, Lehmann SG, Sturm N, Sakly M, Sève M, Amara S. Intranasal instillation of iron oxide nanoparticles induces inflammation and perturbation of trace elements and neurotransmitters, but not behavioral impairment in rats. Environ Sci Pollut Res 2018;25:16922-32. [DOI: 10.1007/s11356-018-1854-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
47 Marcus M, Smith A, Maswadeh A, Shemesh Z, Zak I, Motiei M, Schori H, Margel S, Sharoni A, Shefi O. Magnetic Targeting of Growth Factors Using Iron Oxide Nanoparticles. Nanomaterials (Basel) 2018;8:E707. [PMID: 30201889 DOI: 10.3390/nano8090707] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
48 Janßen HC, Angrisani N, Kalies S, Hansmann F, Kietzmann M, Warwas DP, Behrens P, Reifenrath J. Biodistribution, biocompatibility and targeted accumulation of magnetic nanoporous silica nanoparticles as drug carrier in orthopedics. J Nanobiotechnology 2020;18:14. [PMID: 31941495 DOI: 10.1186/s12951-020-0578-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
49 Cryer AM, Thorley AJ. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 2019;198:189-205. [PMID: 30796927 DOI: 10.1016/j.pharmthera.2019.02.010] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 14.3] [Reference Citation Analysis]
50 Askri D, Ouni S, Galai S, Chovelon B, Arnaud J, Lehmann SG, Sakly M, Sève M, Amara S. Sub-acute intravenous exposure to Fe2O3 nanoparticles does not alter cognitive performances and catecholamine levels, but slightly disrupts plasma iron level and brain iron content in rats. Journal of Trace Elements in Medicine and Biology 2018;50:73-9. [DOI: 10.1016/j.jtemb.2018.06.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
51 Pohlodek K, Foltín M, Mečiarová I, Ondriaš F. Simultaneous use of magnetic method in localization of impalpable breast cancer and sentinel lymph nodes detection: initial experience. Nanomedicine 2018;13:3075-81. [DOI: 10.2217/nnm-2018-0220] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
52 Mnasri W, Tahar LB, Beaunier P, Haidar DA, Boissière M, Sandre O, Ammar S. Polyol-Made Luminescent and Superparamagnetic β-NaY0.8Eu0.2F4@γ-Fe2O3 Core-Satellites Nanoparticles for Dual Magnetic Resonance and Optical Imaging. Nanomaterials (Basel) 2020;10:E393. [PMID: 32102260 DOI: 10.3390/nano10020393] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Yang DW, Wang XP, Wang ZC, Yang ZH, Bian XF. A scientometric analysis on hepatocellular carcinoma magnetic resonance imaging research from 2008 to 2017. Quant Imaging Med Surg 2019;9:465-76. [PMID: 31032193 DOI: 10.21037/qims.2019.02.10] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
54 Groult H, García-Álvarez I, Romero-Ramírez L, Nieto-Sampedro M, Herranz F, Fernández-Mayoralas A, Ruiz-Cabello J. Micellar Iron Oxide Nanoparticles Coated with Anti-Tumor Glycosides. Nanomaterials (Basel) 2018;8:E567. [PMID: 30044386 DOI: 10.3390/nano8080567] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
55 Nardecchia S, Sánchez-Moreno P, Vicente J, Marchal JA, Boulaiz H. Clinical Trials of Thermosensitive Nanomaterials: An Overview. Nanomaterials (Basel) 2019;9:E191. [PMID: 30717386 DOI: 10.3390/nano9020191] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 12.7] [Reference Citation Analysis]
56 Mannucci S, Tambalo S, Conti G, Ghin L, Milanese A, Carboncino A, Nicolato E, Marinozzi MR, Benati D, Bassi R, Marzola P, Sbarbati A. Magnetosomes Extracted from Magnetospirillum gryphiswaldense as Theranostic Agents in an Experimental Model of Glioblastoma. Contrast Media Mol Imaging 2018;2018:2198703. [PMID: 30116160 DOI: 10.1155/2018/2198703] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
57 Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Kubinová Š, Dejneka A, Lunov O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. Journal of Controlled Release 2020;328:59-77. [DOI: 10.1016/j.jconrel.2020.08.036] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
58 Majumder J, Taratula O, Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev 2019;144:57-77. [PMID: 31400350 DOI: 10.1016/j.addr.2019.07.010] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 17.7] [Reference Citation Analysis]
59 Zhao M, Liu Z, Dong L, Zhou H, Yang S, Wu W, Lin J. A GPC3-specific aptamer-mediated magnetic resonance probe for hepatocellular carcinoma. Int J Nanomedicine. 2018;13:4433-4443. [PMID: 30122918 DOI: 10.2147/ijn.s168268] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
60 Moncayo VM, Alazraki AL, Alazraki NP, Aarsvold JN. Sentinel Lymph Node Biopsy Procedures. Seminars in Nuclear Medicine 2017;47:595-617. [DOI: 10.1053/j.semnuclmed.2017.06.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
61 Ahmed M, Gustafsson B, Aldi S, Dusart P, Egri G, Butler LM, Bone D, Dähne L, Hedin U, Caidahl K. Molecular Imaging of a New Multimodal Microbubble for Adhesion Molecule Targeting. Cell Mol Bioeng 2019;12:15-32. [PMID: 31719897 DOI: 10.1007/s12195-018-00562-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
62 Miao C, Hu F, Rui Y, Duan Y, Gu H. A T1/T2 dual functional iron oxide MRI contrast agent with super stability and low hypersensitivity benefited by ultrahigh carboxyl group density. J Mater Chem B 2019;7:2081-91. [PMID: 32254812 DOI: 10.1039/c9tb00002j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
63 Lux F, Tran VL, Thomas E, Dufort S, Rossetti F, Martini M, Truillet C, Doussineau T, Bort G, Denat F, Boschetti F, Angelovski G, Detappe A, Crémillieux Y, Mignet N, Doan BT, Larrat B, Meriaux S, Barbier E, Roux S, Fries P, Müller A, Abadjian MC, Anderson C, Canet-Soulas E, Bouziotis P, Barberi-Heyob M, Frochot C, Verry C, Balosso J, Evans M, Sidi-Boumedine J, Janier M, Butterworth K, McMahon S, Prise K, Aloy MT, Ardail D, Rodriguez-Lafrasse C, Porcel E, Lacombe S, Berbeco R, Allouch A, Perfettini JL, Chargari C, Deutsch E, Le Duc G, Tillement O. AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br J Radiol 2019;92:20180365. [PMID: 30226413 DOI: 10.1259/bjr.20180365] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 9.8] [Reference Citation Analysis]
64 Mihara K, Matsuda S, Nakamura Y, Aiura K, Kuwahata A, Chikaki S, Sekino M, Kusakabe M, Suzuki S, Fuchimoto D, Onishi A, Kuramoto J, Kameyama K, Itano O, Yagi H, Abe Y, Kitago M, Shinoda M, Kitagawa Y. Intraoperative laparoscopic detection of sentinel lymph nodes with indocyanine green and superparamagnetic iron oxide in a swine gallbladder cancer model. PLoS One 2021;16:e0248531. [PMID: 33705492 DOI: 10.1371/journal.pone.0248531] [Reference Citation Analysis]
65 Zhang Y, Yao H. Potential Therapeutic Mechanisms and Tracking of Transplanted Stem Cells: Implications for Stroke Treatment. Stem Cells Int 2017;2017:2707082. [PMID: 28904531 DOI: 10.1155/2017/2707082] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
66 Bonvin D, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M. ATP and NADPH coated iron oxide nanoparticles for targeting of highly metabolic tumor cells. J Mater Chem B 2017;5:8353-65. [PMID: 32264504 DOI: 10.1039/c7tb01935a] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
67 Wáng YXJ, Idée JM. Erratum to a comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 2017;7:383. [PMID: 28812007 DOI: 10.21037/qims.2017.05.05] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
68 Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. Adv Mater 2019;31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 13.3] [Reference Citation Analysis]
69 Brisset J, Gazeau F, Corot C, Nighoghossian N, Berthezène Y, Canet-soulas E, Wiart M. INFLAM – INFLAMmation in Brain and Vessels with Iron Nanoparticles and Cell Trafficking: A Multiscale Approach of Tissue Microenvironment, Iron Nanostructure and Iron Biotransformation. IRBM 2018;39:93-102. [DOI: 10.1016/j.irbm.2018.02.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Chauhan A, Midha S, Kumar R, Meena R, Singh P, Jha SK, Kuanr BK. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles. Biomater Sci 2021;9:2972-90. [PMID: 33635305 DOI: 10.1039/d0bm01705a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
71 Miranda VM. Medicinal inorganic chemistry: an updated review on the status of metallodrugs and prominent metallodrug candidates. Reviews in Inorganic Chemistry 2021;0:000010151520200030. [DOI: 10.1515/revic-2020-0030] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Rubia-Rodríguez I, Santana-Otero A, Spassov S, Tombácz E, Johansson C, De La Presa P, Teran FJ, Del Puerto Morales M, Veintemillas-Verdaguer S, Thanh NTK, Besenhard MO, Wilhelm C, Gazeau F, Harmer Q, Mayes E, Manshian BB, Soenen SJ, Gu Y, Millán Á, Efthimiadou EK, Gaudet J, Goodwill P, Mansfield J, Steinhoff U, Wells J, Wiekhorst F, Ortega D. Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials (Basel) 2021;14:706. [PMID: 33546176 DOI: 10.3390/ma14040706] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
73 Mukherjee S, Sonanini D, Maurer A, Daldrup-Link HE. The yin and yang of imaging tumor associated macrophages with PET and MRI. Theranostics 2019;9:7730-48. [PMID: 31695797 DOI: 10.7150/thno.37306] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
74 Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 2019;138:302-25. [PMID: 30639256 DOI: 10.1016/j.addr.2019.01.005] [Cited by in Crossref: 250] [Cited by in F6Publishing: 185] [Article Influence: 83.3] [Reference Citation Analysis]
75 Zhu X, Deng X, Lu C, Chen Y, Jie L, Zhang Q, Li W, Wang Z, Du Y, Yu R. SPIO-loaded nanostructured lipid carriers as liver-targeted molecular T2-weighted MRI contrast agent. Quant Imaging Med Surg 2018;8:770-80. [PMID: 30306057 DOI: 10.21037/qims.2018.09.03] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
76 Pirasteh A, Lovrec P, Bodei L. Imaging of neuroendocrine tumors: A pictorial review of the clinical value of different imaging modalities. Rev Endocr Metab Disord 2021;22:539-52. [PMID: 33783695 DOI: 10.1007/s11154-021-09631-7] [Reference Citation Analysis]
77 Allahverdiyev AM, Parlar E, Dinparvar S, Bagirova M, Abamor EŞ. Current aspects in treatment of breast cancer based of nanodrug delivery systems and future prospects. Artif Cells Nanomed Biotechnol 2018;46:S755-62. [PMID: 30260234 DOI: 10.1080/21691401.2018.1511573] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
78 Lin BR, Chen CH, Kunuku S, Chen TY, Hsiao TY, Niu H, Lee CP. Fe Doped Magnetic Nanodiamonds Made by Ion Implantation as Contrast Agent for MRI. Sci Rep 2018;8:7058. [PMID: 29728582 DOI: 10.1038/s41598-018-25380-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
79 Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, Xu T, Tang T, Bian L, Wang YJ, Kostarelos K, Zhang L. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot 2017;2:eaaq1155. [PMID: 33157904 DOI: 10.1126/scirobotics.aaq1155] [Cited by in Crossref: 283] [Cited by in F6Publishing: 171] [Article Influence: 283.0] [Reference Citation Analysis]
80 Song Q, Javid A, Zhang G, Li Y. Applications of Magnetite Nanoparticles in Cancer Immunotherapies: Present Hallmarks and Future Perspectives. Front Immunol 2021;12:701485. [PMID: 34675914 DOI: 10.3389/fimmu.2021.701485] [Reference Citation Analysis]
81 Manescu Paltanea V, Paltanea G, Antoniac I, Vasilescu M. Magnetic Nanoparticles Used in Oncology. Materials (Basel) 2021;14:5948. [PMID: 34683540 DOI: 10.3390/ma14205948] [Reference Citation Analysis]
82 Amatya R, Hwang S, Park T, Min KA, Shin MC. In Vitro and In Vivo Evaluation of PEGylated Starch-Coated Iron Oxide Nanoparticles for Enhanced Photothermal Cancer Therapy. Pharmaceutics 2021;13:871. [PMID: 34204840 DOI: 10.3390/pharmaceutics13060871] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Wang P, Aguirre A. New Strategies and In Vivo Monitoring Methods for Stem Cell-Based Anticancer Therapies. Stem Cells Int 2018;2018:7315218. [PMID: 30581474 DOI: 10.1155/2018/7315218] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
84 Garau LM, Muccioli S, Caponi L, Maccauro M, Manca G. Sentinel lymph node biopsy in oral–oropharyngeal squamous cell carcinoma: standards, new technical procedures, and clinical advances. Clin Transl Imaging 2019;7:337-56. [DOI: 10.1007/s40336-019-00338-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
85 Unnikrishnan BS, Preethi GU, Anitha S, Shiji R, Archana MG, Sreekutty J, Anusree KS, Syama HP, Deepa M, Anil P, Sreelekha TT. Impact of Galactoxyloglucan Coated Iron Oxide Nanoparticles on Reactive Oxygen Species Generation and Magnetic Resonance Imaging for Tumor Management. J Clust Sci 2022;33:361-74. [DOI: 10.1007/s10876-020-01971-9] [Reference Citation Analysis]
86 Kostevšek N, Cheung CCL, Serša I, Kreft ME, Monaco I, Comes Franchini M, Vidmar J, Al-Jamal WT. Magneto-Liposomes as MRI Contrast Agents: A Systematic Study of Different Liposomal Formulations. Nanomaterials (Basel) 2020;10:E889. [PMID: 32384645 DOI: 10.3390/nano10050889] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
87 Bedőcs P, Szebeni J. The Critical Choice of Animal Models in Nanomedicine Safety Assessment: A Lesson Learned From Hemoglobin-Based Oxygen Carriers. Front Immunol 2020;11:584966. [PMID: 33193403 DOI: 10.3389/fimmu.2020.584966] [Reference Citation Analysis]
88 Stinnett G, Taheri N, Villanova J, Bohloul A, Guo X, Esposito EP, Xiao Z, Stueber D, Avendano C, Decuzzi P, Pautler RG, Colvin VL. 2D Gadolinium Oxide Nanoplates as T1 Magnetic Resonance Imaging Contrast Agents. Adv Healthc Mater 2021;10:e2001780. [PMID: 33882196 DOI: 10.1002/adhm.202001780] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Pedro L, Harmer Q, Mayes E, Shields JD. Impact of Locally Administered Carboxydextran-Coated Super-Paramagnetic Iron Nanoparticles on Cellular Immune Function. Small 2019;15:e1900224. [PMID: 30985079 DOI: 10.1002/smll.201900224] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
90 Lu Y, Huang J, Neverova NV, Nguyen KL. USPIOs as targeted contrast agents in cardiovascular magnetic resonance imaging. Curr Cardiovasc Imaging Rep 2021;14:2. [PMID: 33824694 DOI: 10.1007/s12410-021-09552-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Akakuru OU, Iqbal MZ, Liu C, Xing J, Wei Z, Jiang Z, Fang Q, Yuan B, Nosike EI, Xia J, Jin Y, Zheng J, Wu A. Self-assembled, biocompatible and biodegradable TEMPO-conjugated nanoparticles enable folate-targeted tumor magnetic resonance imaging. Applied Materials Today 2020;18:100524. [DOI: 10.1016/j.apmt.2019.100524] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
92 Portilla Y, Mulens-Arias V, Paradela A, Ramos-Fernández A, Pérez-Yagüe S, Morales MP, Barber DF. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Biomaterials 2022;281:121365. [PMID: 35038611 DOI: 10.1016/j.biomaterials.2022.121365] [Reference Citation Analysis]
93 Dickie BR, Parker GJ, Parkes LM. Measuring water exchange across the blood-brain barrier using MRI. Progress in Nuclear Magnetic Resonance Spectroscopy 2020;116:19-39. [DOI: 10.1016/j.pnmrs.2019.09.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
94 Basaki M, Keykavusi K, Sahraiy N, Ali Shahbazfar A. Maternal exposure to iron oxide nanoparticles is associated with ferroptosis in the brain: A chicken embryo model analysis. J Anim Physiol Anim Nutr (Berl) 2021. [PMID: 33719111 DOI: 10.1111/jpn.13533] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Xie Q, Wen T, Yang A, Zhang X, Chen B, Meng J, Liu J, Gu N, Xu H. A Contrast Examination of Proinflammatory Effects on Kidney Function for γ-Fe2O3 NP and Gadolinium Dimeglumine. Int J Nanomedicine 2021;16:2271-82. [PMID: 33776432 DOI: 10.2147/IJN.S299004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Akakuru OU, Iqbal MZ, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane NS, Wu A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjug Chem 2019;30:2264-86. [PMID: 31380621 DOI: 10.1021/acs.bioconjchem.9b00499] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
97 Hood MN, Blankholm AD, Stolpen A. The Rise of Off-Label Iron-Based Agents in Magnetic Resonance Imaging. Journal of Radiology Nursing 2019;38:38-41. [DOI: 10.1016/j.jradnu.2018.11.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
98 Satpathy M, Wang L, Zielinski RJ, Qian W, Wang YA, Mohs AM, Kairdolf BA, Ji X, Capala J, Lipowska M, Nie S, Mao H, Yang L. Targeted Drug Delivery and Image-Guided Therapy of Heterogeneous Ovarian Cancer Using HER2-Targeted Theranostic Nanoparticles. Theranostics 2019;9:778-95. [PMID: 30809308 DOI: 10.7150/thno.29964] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 12.3] [Reference Citation Analysis]
99 Uzhytchak M, Smolková B, Lunova M, Jirsa M, Frtús A, Kubinová Š, Dejneka A, Lunov O. Iron Oxide Nanoparticle-Induced Autophagic Flux Is Regulated by Interplay between p53-mTOR Axis and Bcl-2 Signaling in Hepatic Cells. Cells 2020;9:E1015. [PMID: 32325714 DOI: 10.3390/cells9041015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
100 Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 2021;15:167-204. [PMID: 33216662 DOI: 10.1080/17435390.2020.1842934] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
101 Rouard N, Peiffert D, Rio E, Mahé M, Delpon G, Marchesi V, Falk AT, Salleron J, Serre A. Intensity-modulated radiation therapy of anal squamous cell carcinoma: Relationship between delineation quality and regional recurrence. Radiotherapy and Oncology 2019;131:93-100. [DOI: 10.1016/j.radonc.2018.10.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
102 Mnasri W, Parvizian M, Ammar-Merah S. Design and Synthesis of Luminescent Lanthanide-Based Bimodal Nanoprobes for Dual Magnetic Resonance (MR) and Optical Imaging. Nanomaterials (Basel) 2021;11:354. [PMID: 33535481 DOI: 10.3390/nano11020354] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
103 Demine S, Balhuizen A, Debaille V, Joosten L, Fereau M, Chilla SNM, Millard I, Scharfmann R, Egrise D, Goldman S, Marchetti P, Gotthardt M, Laurent S, Burtea C, Eizirik DL. Imaging of Human Insulin Secreting Cells with Gd-DOTA-P88, a Paramagnetic Contrast Agent Targeting the Beta Cell Biomarker FXYD2γa. Molecules 2018;23:E2100. [PMID: 30134599 DOI: 10.3390/molecules23092100] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
104 Alphandéry E. Iron oxide nanoparticles as multimodal imaging tools. RSC Adv 2019;9:40577-87. [DOI: 10.1039/c9ra08612a] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
105 Piché D, Tavernaro I, Fleddermann J, Lozano JG, Varambhia A, Maguire ML, Koch M, Ukai T, Hernández Rodríguez AJ, Jones L, Dillon F, Reyes Molina I, Mitzutani M, González Dalmau ER, Maekawa T, Nellist PD, Kraegeloh A, Grobert N. Targeted T1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe2O4 Nanoparticles. ACS Appl Mater Interfaces 2019;11:6724-40. [PMID: 30688055 DOI: 10.1021/acsami.8b17162] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
106 Stanicki D, Larbanoix L, Boutry S, Vangijzegem T, Ternad I, Garifo S, Muller RN, Laurent S. Impact of the chain length on the biodistribution profiles of PEGylated iron oxide nanoparticles: a multimodal imaging study. J Mater Chem B 2021;9:5055-68. [PMID: 34132320 DOI: 10.1039/d1tb00573a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
107 Winter A, Engels S, Goos P, Süykers MC, Gudenkauf S, Henke RP, Wawroschek F. Accuracy of Magnetometer-Guided Sentinel Lymphadenectomy after Intraprostatic Injection of Superparamagnetic Iron Oxide Nanoparticles in Prostate Cancer: The SentiMag Pro II Study. Cancers (Basel) 2019;12:E32. [PMID: 31877623 DOI: 10.3390/cancers12010032] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
108 Iqbal MZ, Luo D, Akakuru OU, Mushtaq A, Hou Y, Ali I, Ijaz G, Khalid B, Kong X, Wu A. Facile synthesis of biocompatible magnetic titania nanorods for T1-magnetic resonance imaging and enhanced phototherapy of cancers. J Mater Chem B 2021;9:6623-33. [PMID: 34378616 DOI: 10.1039/d1tb01097b] [Reference Citation Analysis]
109 Abedin MR, Umapathi S, Mahendrakar H, Laemthong T, Coleman H, Muchangi D, Santra S, Nath M, Barua S. Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications. J Nanobiotechnology 2018;16:80. [PMID: 30316298 DOI: 10.1186/s12951-018-0405-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
110 Levada K, Pshenichnikov S, Omelyanchik A, Rodionova V, Nikitin A, Savchenko A, Schetinin I, Zhukov D, Abakumov M, Majouga A, Lunova M, Jirsa M, Smolková B, Uzhytchak M, Dejneka A, Lunov O. Progressive lysosomal membrane permeabilization induced by iron oxide nanoparticles drives hepatic cell autophagy and apoptosis. Nano Converg 2020;7:17. [PMID: 32424769 DOI: 10.1186/s40580-020-00228-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
111 Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021;169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
112 Geppert M, Himly M. Iron Oxide Nanoparticles in Bioimaging - An Immune Perspective. Front Immunol 2021;12:688927. [PMID: 34211476 DOI: 10.3389/fimmu.2021.688927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]