BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feng J, Xu L, Ni S, Gu J, Zhu H, Wang H, Zhang S, Zhang W, Huang J. Involvement of FoxQ1 in NSCLC through regulating EMT and increasing chemosensitivity. Oncotarget 2014;5:9689-702. [PMID: 25356753 DOI: 10.18632/oncotarget.2103] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Xu T, Wang M, Jiang L, Ma L, Wan L, Chen Q, Wei C, Wang Z. CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer 2020;19:127. [PMID: 32799866 DOI: 10.1186/s12943-020-01240-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
2 Li L, Xu B, Zhang H, Wu J, Song Q, Yu J. Potentiality of forkhead box Q1 as a biomarker for monitoring tumor features and predicting prognosis in non-small cell lung cancer. J Clin Lab Anal 2020;34:e23031. [PMID: 31713908 DOI: 10.1002/jcla.23031] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
3 Chen YL, Zhang Y, Wang J, Chen N, Fang W, Zhong J, Liu Y, Qin R, Yu X, Sun Z, Gao F. A 17 gene panel for non-small-cell lung cancer prognosis identified through integrative epigenomic-transcriptomic analyses of hypoxia-induced epithelial-mesenchymal transition. Mol Oncol 2019;13:1490-502. [PMID: 30973670 DOI: 10.1002/1878-0261.12491] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
4 Guo J, Yan Y, Yan Y, Guo Q, Zhang M, Zhang J, Goltzman D. Tumor-associated macrophages induce the expression of FOXQ1 to promote epithelial-mesenchymal transition and metastasis in gastric cancer cells. Oncol Rep 2017;38:2003-10. [PMID: 28791370 DOI: 10.3892/or.2017.5877] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
5 Cui X, Zhang J, Lv J, Yan Y, Liu X, Wang J, Lv Y, Zhang J. Prognostic value of FOXQ1 in patients with malignant solid tumors: a meta-analysis. Onco Targets Ther 2017;10:1777-81. [PMID: 28367060 DOI: 10.2147/OTT.S130905] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
6 Brozovic A. The relationship between platinum drug resistance and epithelial-mesenchymal transition. Arch Toxicol 2017;91:605-19. [PMID: 28032148 DOI: 10.1007/s00204-016-1912-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 36] [Article Influence: 4.8] [Reference Citation Analysis]
7 Xiao B, Liu H, Gu Z, Ji C. Expression of MicroRNA-133 Inhibits Epithelial–Mesenchymal Transition in Lung Cancer Cells by Directly Targeting FOXQ1. Archivos de Bronconeumología (English Edition) 2016;52:505-11. [DOI: 10.1016/j.arbr.2016.01.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Ovsiy I, Riabov V, Manousaridis I, Michel J, Moganti K, Yin S, Liu T, Sticht C, Kremmer E, Harmsen MC, Goerdt S, Gratchev A, Kzhyshkowska J. IL-4 driven transcription factor FoxQ1 is expressed by monocytes in atopic dermatitis and stimulates monocyte migration. Sci Rep 2017;7:16847. [PMID: 29203829 DOI: 10.1038/s41598-017-17307-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
9 Liu P, Chen L. Inhibition of sonic hedgehog signaling blocks cell migration and growth but induces apoptosis via suppression of FOXQ1 in natural killer/T-cell lymphoma. Leuk Res 2018;64:1-9. [PMID: 29132010 DOI: 10.1016/j.leukres.2017.11.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
10 Bach DH, Long NP, Luu TT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018;19:E3279. [PMID: 30360388 DOI: 10.3390/ijms19103279] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 7.8] [Reference Citation Analysis]
11 Cheruku HR, Mohamedali A, Cantor DI, Tan SH, Nice EC, Baker MS. Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer. EuPA Open Proteomics 2015;8:104-15. [DOI: 10.1016/j.euprot.2015.06.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
12 Zhang JJ, Cao CX, Wan LL, Zhang W, Liu ZJ, Wang JL, Guo Q, Tang H. Forkhead Box q1 promotes invasion and metastasis in colorectal cancer by activating the epidermal growth factor receptor pathway. World J Gastroenterol 2022; 28(17): 1781-1797 [DOI: 10.3748/wjg.v28.i17.1781] [Reference Citation Analysis]
13 Block J, Meng F, Wu G. Reversing cancer stemness. Aging (Albany NY) 2015;7:893-4. [PMID: 26583906 DOI: 10.18632/aging.100846] [Reference Citation Analysis]
14 Zhang W, Yan Y, Gu M, Wang X, Zhu H, Zhang S, Wang W. High expression levels of Wnt5a and Ror2 in laryngeal squamous cell carcinoma are associated with poor prognosis. Oncol Lett 2017;14:2232-8. [PMID: 28781662 DOI: 10.3892/ol.2017.6386] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
15 Lee CH. Epithelial-mesenchymal transition: Initiation by cues from chronic inflammatory tumor microenvironment and termination by anti-inflammatory compounds and specialized pro-resolving lipids. Biochemical Pharmacology 2018;158:261-73. [DOI: 10.1016/j.bcp.2018.10.031] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
16 Yonemori K, Seki N, Idichi T, Kurahara H, Osako Y, Koshizuka K, Arai T, Okato A, Kita Y, Arigami T, Mataki Y, Kijima Y, Maemura K, Natsugoe S. The microRNA expression signature of pancreatic ductal adenocarcinoma by RNA sequencing: anti-tumour functions of the microRNA-216 cluster. Oncotarget 2017;8:70097-115. [PMID: 29050264 DOI: 10.18632/oncotarget.19591] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
17 Zhang T, Wang P, Liu Y, Zhou J, Shi Z, Cheng K, Huang T, Wang X, Yang GL, Yang B, Ma S, Guan F. Overexpression of FOXQ1 enhances anti-senescence and migration effects of human umbilical cord mesenchymal stem cells in vitro and in vivo. Cell Tissue Res. 2018;373:379-393. [PMID: 29500491 DOI: 10.1007/s00441-018-2815-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
18 Li J, Huang J, Huang F, Jin Q, Zhu H, Wang X, Chen M. Decreased expression of IDH1-R132H correlates with poor survival in gastrointestinal cancer. Oncotarget 2016;7:73638-50. [PMID: 27655638 DOI: 10.18632/oncotarget.12039] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
19 Kim SH, Hahm ER, Singh KB, Singh SV. Novel mechanistic targets of forkhead box Q1 transcription factor in human breast cancer cells. Mol Carcinog 2020;59:1116-28. [PMID: 32754922 DOI: 10.1002/mc.23241] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Ren P, Yang XQ, Zhai XL, Zhang YQ, Huang JF. Overexpression of Rab27B is correlated with distant metastasis and poor prognosis in ovarian cancer. Oncol Lett 2016;12:1539-45. [PMID: 27446467 DOI: 10.3892/ol.2016.4801] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
21 Mekala JR, Naushad SM, Ponnusamy L, Arivazhagan G, Sakthiprasad V, Pal-Bhadra M. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer. Gene 2018;641:248-58. [PMID: 29038000 DOI: 10.1016/j.gene.2017.10.018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
22 Liu X, Sun L, Zhang S, Zhang S, Li W. GINS2 facilitates epithelial-to-mesenchymal transition in non-small-cell lung cancer through modulating PI3K/Akt and MEK/ERK signaling. J Cell Physiol 2020;235:7747-56. [PMID: 31681988 DOI: 10.1002/jcp.29381] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
23 Shimizu R, Tanaka M, Tsutsumi S, Aburatani H, Yamazaki Y, Homme M, Kitagawa Y, Nakamura T. EWS-FLI1 regulates a transcriptional program in cooperation with Foxq1 in mouse Ewing sarcoma. Cancer Sci 2018;109:2907-18. [PMID: 29945296 DOI: 10.1111/cas.13710] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
24 Xiao B, Liu H, Gu Z, Ji C. Expression of microRNA-133 inhibits epithelial-mesenchymal transition in lung cancer cells by directly targeting FOXQ1. Arch Bronconeumol 2016;52:505-11. [PMID: 26858166 DOI: 10.1016/j.arbres.2015.10.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
25 Liu Z, Yuan M, Meng X, Bie H, Yao S. Identification of testicular Foxq1 as a critical modulator of lactate metabolism in mouse Sertoli cells. Histochem Cell Biol 2021. [PMID: 34091745 DOI: 10.1007/s00418-021-01994-x] [Reference Citation Analysis]
26 Wang J, Li W, Zhao Y, Kang, Fu W, Zheng X, Pang X, Du G. Members of FOX family could be drug targets of cancers. Pharmacol Ther 2018;181:183-96. [PMID: 28830838 DOI: 10.1016/j.pharmthera.2017.08.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
27 Yang L, Zhang H, Yao Q, Yan Y, Wu R, Liu M. Clinical Significance of SASH1 Expression in Glioma. Dis Markers 2015;2015:383046. [PMID: 26424902 DOI: 10.1155/2015/383046] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
28 Wang P, Lv C, Zhang T, Liu J, Yang J, Guan F, Hong T. FOXQ1 regulates senescence-associated inflammation via activation of SIRT1 expression. Cell Death Dis 2017;8:e2946. [PMID: 28726780 DOI: 10.1038/cddis.2017.340] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
29 Li Y, Wang HQ, Wang AC, Li YX, Ding SS, An XJ, Shi HY. Overexpression of Forkhead box Q1 correlates with poor prognosis in papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2019;90:334-42. [PMID: 30378716 DOI: 10.1111/cen.13896] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
30 Huang J, Tang Q, Wang C, Yu H, Feng Z, Zhu J. Molecularly Targeted Therapy of Human Hepatocellular Carcinoma Xenografts with Radio-iodinated Anti-VEGFR2 Murine-Human Chimeric Fab. Sci Rep 2015;5:10660. [PMID: 26021484 DOI: 10.1038/srep10660] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
31 Gao Y, Wang B, Gao S. BRD7 Acts as a Tumor Suppressor Gene in Lung Adenocarcinoma. PLoS One 2016;11:e0156701. [PMID: 27580131 DOI: 10.1371/journal.pone.0156701] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
32 Weng W, Okugawa Y, Toden S, Toiyama Y, Kusunoki M, Goel A. FOXM1 and FOXQ1 Are Promising Prognostic Biomarkers and Novel Targets of Tumor-Suppressive miR-342 in Human Colorectal Cancer. Clin Cancer Res 2016;22:4947-57. [PMID: 27162244 DOI: 10.1158/1078-0432.CCR-16-0360] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
33 Zhang Z, Ma J, Luan G, Kang L, Su Y, He Y, Luan F. MiR-506 suppresses tumor proliferation and invasion by targeting FOXQ1 in nasopharyngeal carcinoma. PLoS One 2015;10:e0122851. [PMID: 25856555 DOI: 10.1371/journal.pone.0122851] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
34 Liu G, Guo X, Zhang Y, Liu Y, Li D, Tang G, Cui S. Expression and significance of LncRNA MNX1-AS1 in non-small cell lung cancer. Onco Targets Ther 2019;12:3129-38. [PMID: 31118668 DOI: 10.2147/OTT.S198014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]