BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cannonier SA, Gonzales CB, Ely K, Guelcher SA, Sterling JA. Hedgehog and TGFβ signaling converge on Gli2 to control bony invasion and bone destruction in oral squamous cell carcinoma. Oncotarget 2016;7:76062-75. [PMID: 27738315 DOI: 10.18632/oncotarget.12584] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Wu JB, Yin L, Shi C, Li Q, Duan P, Huang JM, Liu C, Wang F, Lewis M, Wang Y, Lin TP, Pan CC, Posadas EM, Zhau HE, Chung LWK. MAOA-Dependent Activation of Shh-IL6-RANKL Signaling Network Promotes Prostate Cancer Metastasis by Engaging Tumor-Stromal Cell Interactions. Cancer Cell. 2017;31:368-382. [PMID: 28292438 DOI: 10.1016/j.ccell.2017.02.003] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 12.0] [Reference Citation Analysis]
2 Vanderburgh J, Hill JL, Gupta MK, Kwakwa KA, Wang SK, Moyer K, Bedingfield SK, Merkel AR, d'Arcy R, Guelcher SA, Rhoades JA, Duvall CL. Tuning Ligand Density To Optimize Pharmacokinetics of Targeted Nanoparticles for Dual Protection against Tumor-Induced Bone Destruction. ACS Nano 2020;14:311-27. [PMID: 31894963 DOI: 10.1021/acsnano.9b04571] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
3 Johnson RW, Suva LJ. Hallmarks of Bone Metastasis. Calcif Tissue Int 2018;102:141-51. [PMID: 29138883 DOI: 10.1007/s00223-017-0362-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 5.4] [Reference Citation Analysis]
4 Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021;44:473-94. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Reference Citation Analysis]
5 Arasu UT, Deen AJ, Pasonen-Seppänen S, Heikkinen S, Lalowski M, Kärnä R, Härkönen K, Mäkinen P, Lázaro-Ibáñez E, Siljander PR, Oikari S, Levonen AL, Rilla K. HAS3-induced extracellular vesicles from melanoma cells stimulate IHH mediated c-Myc upregulation via the hedgehog signaling pathway in target cells. Cell Mol Life Sci 2020;77:4093-115. [PMID: 31820036 DOI: 10.1007/s00018-019-03399-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
6 Zhou X, Wang P, Ma Z, Li M, Teng X, Sun L, Wan G, Li Y, Guo L, Liu H. Novel Interplay Between Sonic Hedgehog and Transforming Growth Factor-β1 in Human Nonalcoholic Steatohepatitis. Appl Immunohistochem Mol Morphol 2020;28:154-60. [PMID: 32044884 DOI: 10.1097/PAI.0000000000000724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zhou Y, Sinha S, Schwartz JL, Adami GR. A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA. BMC Cancer 2019;19:607. [PMID: 31221127 DOI: 10.1186/s12885-019-5789-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
8 Liu W, Li CJ, Li LJ. [Advances in molecular mechanisms of bone invasion by oral cancer]. Hua Xi Kou Qiang Yi Xue Za Zhi 2021;39:221-6. [PMID: 33834679 DOI: 10.7518/hxkq.2021.02.015] [Reference Citation Analysis]
9 Ma Z, Zhang C, Liu X, Fang F, Liu S, Liao X, Tao S, Mai H. Characterisation of a subpopulation of CD133+ cancer stem cells from Chinese patients with oral squamous cell carcinoma. Sci Rep 2020;10:8875. [PMID: 32483269 DOI: 10.1038/s41598-020-64947-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Park J, Zhang X, Lee SK, Song NY, Son SH, Kim KR, Shim JH, Park KK, Chung WY. CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion. J Clin Invest 2019;129:5381-99. [PMID: 31487270 DOI: 10.1172/JCI125336] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
11 Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021;9:1188. [PMID: 34572373 DOI: 10.3390/biomedicines9091188] [Reference Citation Analysis]
12 Ma J, Huang X, Li Z, Shen Y, Lai J, Su Q, Zhao J, Xu J. FOXE1 supports the tumor promotion of Gli2 on papillary thyroid carcinoma by the Wnt/β‐catenin pathway. J Cell Physiol 2019;234:17739-48. [DOI: 10.1002/jcp.28399] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
13 Son SH, Park J, Jung MJ, Lee SK, Kim H, Kim KR, Park KK, Chung WY. Transforming growth factor-β-regulated fractalkine as a marker of erosive bone invasion in oral squamous cell carcinoma. Eur J Oral Sci 2021;129:e12750. [PMID: 33503283 DOI: 10.1111/eos.12750] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Gao J, Tian G, Han X, Zhu Q. Twenty‑four signature genes predict the prognosis of oral squamous cell carcinoma with high accuracy and repeatability. Mol Med Rep 2018;17:2982-90. [PMID: 29257303 DOI: 10.3892/mmr.2017.8256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
15 Petzelbauer P. Prevention of Melanoma Extravasation as a New Treatment Option Exemplified by p38/MK2 Inhibition. Int J Mol Sci 2020;21:E8344. [PMID: 33172202 DOI: 10.3390/ijms21218344] [Reference Citation Analysis]
16 Haraguchi R, Kitazawa R, Kohara Y, Imai Y, Kitazawa S. Novel animal model of soft tissue tumor due to aberrant hedgehog signaling activation in pericyte lineage. Cell Tissue Res. [DOI: 10.1007/s00441-022-03578-0] [Reference Citation Analysis]
17 Schulz A, Gorodetska I, Behrendt R, Fuessel S, Erdmann K, Foerster S, Datta K, Mayr T, Dubrovska A, Muders MH. Linking NRP2 With EMT and Chemoradioresistance in Bladder Cancer. Front Oncol 2019;9:1461. [PMID: 32038994 DOI: 10.3389/fonc.2019.01461] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
18 Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2021;148:1548-61. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
19 Zheng S, Li L, Li N, Du Y, Zhang N. 1, 6-O, O-Diacetylbritannilactone from Inula britannica Induces Anti-Tumor Effect on Oral Squamous Cell Carcinoma via miR-1247-3p/LXRα/ABCA1 Signaling. Onco Targets Ther 2020;13:11097-109. [PMID: 33149621 DOI: 10.2147/OTT.S263014] [Reference Citation Analysis]
20 Vaassen LA, Speel EM, Kessler PA. Bone invasion by oral squamous cell carcinoma: Molecular alterations leading to osteoclastogenesis – a review of literature. Journal of Cranio-Maxillofacial Surgery 2017;45:1464-71. [DOI: 10.1016/j.jcms.2017.04.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]