BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Altmeyer M, Hottiger MO. Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging. Aging (Albany NY) 2009;1:458-69. [PMID: 20157531 DOI: 10.18632/aging.100052] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP. Poly(ADP-ribose) Polymerase-1 in Amyloid Beta Toxicity and Alzheimer's Disease. Mol Neurobiol 2012;46:78-84. [DOI: 10.1007/s12035-012-8258-9] [Cited by in Crossref: 69] [Cited by in F6Publishing: 68] [Article Influence: 6.9] [Reference Citation Analysis]
2 Pazienza V, Borghesan M, Mazza T, Sheedfar F, Panebianco C, Williams R, Mazzoccoli G, Andriulli A, Nakanishi T, Vinciguerra M. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging (Albany NY) 2014;6:35-47. [PMID: 24473773 DOI: 10.18632/aging.100632] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
3 Banasik M, Stedeford T, Strosznajder RP. Natural Inhibitors of Poly(ADP-ribose) Polymerase-1. Mol Neurobiol 2012;46:55-63. [DOI: 10.1007/s12035-012-8257-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
4 Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One. 2011;6:e19194. [PMID: 21541336 DOI: 10.1371/journal.pone.0019194] [Cited by in Crossref: 379] [Cited by in F6Publishing: 359] [Article Influence: 34.5] [Reference Citation Analysis]
5 Mangerich A, Bürkle A. Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid Med Cell Longev 2012;2012:321653. [PMID: 23050038 DOI: 10.1155/2012/321653] [Cited by in Crossref: 67] [Cited by in F6Publishing: 63] [Article Influence: 6.7] [Reference Citation Analysis]
6 Guberovic I, Hurtado-Bagès S, Rivera-Casas C, Knobloch G, Malinverni R, Valero V, Leger MM, García J, Basquin J, Gómez de Cedrón M, Frigolé-Vivas M, Cheema MS, Pérez A, Ausió J, Ramírez de Molina A, Salvatella X, Ruiz-Trillo I, Eirin-Lopez JM, Ladurner AG, Buschbeck M. Evolution of a histone variant involved in compartmental regulation of NAD metabolism. Nat Struct Mol Biol 2021;28:1009-19. [PMID: 34887560 DOI: 10.1038/s41594-021-00692-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019;30:251-94. [PMID: 29634344 DOI: 10.1089/ars.2017.7269] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 13.3] [Reference Citation Analysis]
8 Höglund A, Strömvall K, Li Y, Forshell LP, Nilsson JA. Chk2 deficiency in Myc overexpressing lymphoma cells elicits a synergistic lethal response in combination with PARP inhibition. Cell Cycle 2011;10:3598-607. [PMID: 22030621 DOI: 10.4161/cc.10.20.17887] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
9 Morales P, Bustamante D, Espina-Marchant P, Neira-Peña T, Gutiérrez-Hernández MA, Allende-Castro C, Rojas-Mancilla E. Pathophysiology of perinatal asphyxia: can we predict and improve individual outcomes? EPMA J 2011;2:211-30. [PMID: 23199150 DOI: 10.1007/s13167-011-0100-3] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
10 Posavec Marjanović M, Hurtado-Bagès S, Lassi M, Valero V, Malinverni R, Delage H, Navarro M, Corujo D, Guberovic I, Douet J, Gama-Perez P, Garcia-Roves PM, Ahel I, Ladurner AG, Yanes O, Bouvet P, Suelves M, Teperino R, Pospisilik JA, Buschbeck M. MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD+ consumption. Nat Struct Mol Biol 2017;24:902-10. [PMID: 28991266 DOI: 10.1038/nsmb.3481] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
11 Gaur U, Tu J, Li D, Gao Y, Lian T, Sun B, Yang D, Fan X, Yang M. Molecular evolutionary patterns of NAD+/Sirtuin aging signaling pathway across taxa. PLoS One 2017;12:e0182306. [PMID: 28767699 DOI: 10.1371/journal.pone.0182306] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
12 Hopp AK, Hottiger MO. Uncovering the Invisible: Mono-ADP-ribosylation Moved into the Spotlight. Cells 2021;10:680. [PMID: 33808662 DOI: 10.3390/cells10030680] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Bian C, Zhang C, Luo T, Vyas A, Chen SH, Liu C, Kassab MA, Yang Y, Kong M, Yu X. NADP+ is an endogenous PARP inhibitor in DNA damage response and tumor suppression. Nat Commun 2019;10:693. [PMID: 30741937 DOI: 10.1038/s41467-019-08530-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
14 Zhang GH, Chao M, Hui LH, Xu DL, Cai WL, Zheng J, Gao M, Zhang MX, Wang J, Lu QH. Poly(ADP-ribose)polymerase 1 inhibition protects against age-dependent endothelial dysfunction. Clin Exp Pharmacol Physiol 2015;42:1266-74. [PMID: 26331430 DOI: 10.1111/1440-1681.12484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
15 Denel-bobrowska M, Łukawska M, Rogalska A, Forma E, Bryś M, Oszczapowicz I, Marczak A. Identification of the key pathway of oxazolinoanthracyclines mechanism of action in cells derived from human solid tumors. Toxicology and Applied Pharmacology 2016;313:159-69. [DOI: 10.1016/j.taap.2016.10.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
16 Cao G, Jiang W, Shi G, Tian Z, Shang J, Xie Z, Chen W, Tian B, Wei X, Wei F, Gu H. BrPARP1, a Poly (ADP-Ribose) Polymerase Gene, Is Involved in Root Development in Brassica rapa under Drought Stress. Horticulturae 2022;8:78. [DOI: 10.3390/horticulturae8010078] [Reference Citation Analysis]
17 Chen Y, Bang S, Park S, Shi H, Kim SF. Acyl-CoA-binding domain containing 3 modulates NAD+ metabolism through activating poly(ADP-ribose) polymerase 1. Biochem J 2015;469:189-98. [PMID: 25940138 DOI: 10.1042/BJ20141487] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
18 Sodhi RK, Singh N, Jaggi AS. Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications. Vascular Pharmacology 2010;53:77-87. [DOI: 10.1016/j.vph.2010.06.003] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 6.4] [Reference Citation Analysis]
19 Ghosh R, Roy S, Franco S. PARP1 depletion induces RIG-I-dependent signaling in human cancer cells. PLoS One 2018;13:e0194611. [PMID: 29590171 DOI: 10.1371/journal.pone.0194611] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
20 Su X, Yao X, Sun Z, Han Q, Zhao RC. Optimization of Reference Genes for Normalization of Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction Results in Senescence Study of Mesenchymal Stem Cells. Stem Cells Dev 2016;25:1355-65. [PMID: 27484587 DOI: 10.1089/scd.2016.0031] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
21 Michelena J, Lezaja A, Teloni F, Schmid T, Imhof R, Altmeyer M. Analysis of PARP inhibitor toxicity by multidimensional fluorescence microscopy reveals mechanisms of sensitivity and resistance. Nat Commun 2018;9:2678. [PMID: 29992957 DOI: 10.1038/s41467-018-05031-9] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 10.5] [Reference Citation Analysis]
22 Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010;142:943-53. [PMID: 20832105 DOI: 10.1016/j.cell.2010.08.016] [Cited by in Crossref: 242] [Cited by in F6Publishing: 225] [Article Influence: 20.2] [Reference Citation Analysis]
23 Hirsch BM, Burgos ES, Schramm VL. Transition-state analysis of 2-O-acetyl-ADP-ribose hydrolysis by human macrodomain 1. ACS Chem Biol 2014;9:2255-62. [PMID: 25051211 DOI: 10.1021/cb500485w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
24 Le TV, Suh JH, Kim N, Park HJ. In silico identification of poly(ADP-ribose)polymerase-1 inhibitors and their chemosensitizing effects against cisplatin-resistant human gastric cancer cells. Bioorg Med Chem Lett 2013;23:2642-6. [PMID: 23522835 DOI: 10.1016/j.bmcl.2013.02.094] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
25 Lillenes MS, Rabano A, Støen M, Riaz T, Misaghian D, Møllersen L, Esbensen Y, Günther CC, Selnes P, Stenset VT, Fladby T, Tønjum T. Altered DNA base excision repair profile in brain tissue and blood in Alzheimer's disease. Mol Brain 2016;9:61. [PMID: 27234294 DOI: 10.1186/s13041-016-0237-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
26 Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13:465-476. [PMID: 24854413 DOI: 10.1038/nrd4275] [Cited by in Crossref: 431] [Cited by in F6Publishing: 395] [Article Influence: 53.9] [Reference Citation Analysis]
27 Kassner I, Barandun M, Fey M, Rosenthal F, Hottiger MO. Crosstalk between SET7/9-dependent methylation and ARTD1-mediated ADP-ribosylation of histone H1.4. Epigenetics Chromatin 2013;6:1. [PMID: 23289424 DOI: 10.1186/1756-8935-6-1] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
28 Le NT, Sandhu UG, Quintana-Quezada RA, Hoang NM, Fujiwara K, Abe JI. Flow signaling and atherosclerosis. Cell Mol Life Sci 2017;74:1835-58. [PMID: 28039525 DOI: 10.1007/s00018-016-2442-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
29 Oit-Wiscombe I, Virag L, Soomets U, Altraja A. Increased DNA damage in progression of COPD: a response by poly(ADP-ribose) polymerase-1. PLoS One 2013;8:e70333. [PMID: 23894640 DOI: 10.1371/journal.pone.0070333] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
30 Wei Q, Shi F. Cleavage of poly (ADP-ribose) polymerase-1 is involved in the process of porcine ovarian follicular atresia. Anim Reprod Sci 2013;138:282-91. [PMID: 23522430 DOI: 10.1016/j.anireprosci.2013.02.025] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
31 Xu S, Bai P, Little PJ, Liu P. Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications. Med Res Rev. 2014;34:644-675. [PMID: 24002940 DOI: 10.1002/med.21300] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 6.0] [Reference Citation Analysis]
32 Braidy N, Grant R, Sachdev PS. Nicotinamide adenine dinucleotide and its related precursors for the treatment of Alzheimer's disease. Curr Opin Psychiatry 2018;31:160-6. [PMID: 29232252 DOI: 10.1097/YCO.0000000000000394] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
33 Wei H, Yu X. Functions of PARylation in DNA Damage Repair Pathways. Genomics Proteomics Bioinformatics. 2016;14:131-139. [PMID: 27240471 DOI: 10.1016/j.gpb.2016.05.001] [Cited by in Crossref: 122] [Cited by in F6Publishing: 113] [Article Influence: 20.3] [Reference Citation Analysis]
34 Espinoza-Derout J, Shao XM, Bankole E, Hasan KM, Mtume N, Liu Y, Sinha-Hikim AP, Friedman TC. Hepatic DNA Damage Induced by Electronic Cigarette Exposure Is Associated With the Modulation of NAD+/PARP1/SIRT1 Axis. Front Endocrinol (Lausanne) 2019;10:320. [PMID: 31214115 DOI: 10.3389/fendo.2019.00320] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
35 da Silva TA, Fontes FL, Coutinho LG, de Souza FRS, de Melo JTA, de Souto JT, Leib SL, Agnez-lima LF. SNPs in DNA repair genes associated to meningitis and host immune response. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2011;713:39-47. [DOI: 10.1016/j.mrfmmm.2011.05.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
36 Poljsak B, Milisav I. NAD+ as the Link Between Oxidative Stress, Inflammation, Caloric Restriction, Exercise, DNA Repair, Longevity, and Health Span. Rejuvenation Res 2016;19:406-15. [PMID: 26725653 DOI: 10.1089/rej.2015.1767] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 5.5] [Reference Citation Analysis]
37 Poljsak B, Kovac V, Dahmane R, Levec T, Starc A. Cancer Etiology: A Metabolic Disease Originating from Life's Major Evolutionary Transition? Oxid Med Cell Longev 2019;2019:7831952. [PMID: 31687086 DOI: 10.1155/2019/7831952] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
38 Datta R, Naura AS, Zerfaoui M, Errami Y, Oumouna M, Kim H, Ju J, Ronchi VP, Haas AL, Boulares AH. PARP-1 deficiency blocks IL-5 expression through calpain-dependent degradation of STAT-6 in a murine asthma model. Allergy 2011;66:853-61. [PMID: 21276008 DOI: 10.1111/j.1398-9995.2011.02549.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 3.5] [Reference Citation Analysis]
39 Verdone L, La Fortezza M, Ciccarone F, Caiafa P, Zampieri M, Caserta M. Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription. PLoS One 2015;10:e0144287. [PMID: 26636673 DOI: 10.1371/journal.pone.0144287] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
40 Bilan V, Selevsek N, Kistemaker HAV, Abplanalp J, Feurer R, Filippov DV, Hottiger MO. New Quantitative Mass Spectrometry Approaches Reveal Different ADP-ribosylation Phases Dependent On the Levels of Oxidative Stress. Mol Cell Proteomics 2017;16:949-58. [PMID: 28325851 DOI: 10.1074/mcp.O116.065623] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 5.4] [Reference Citation Analysis]
41 Hurtado-Bagès S, Knobloch G, Ladurner AG, Buschbeck M. The taming of PARP1 and its impact on NAD+ metabolism. Mol Metab 2020;38:100950. [PMID: 32199820 DOI: 10.1016/j.molmet.2020.01.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
42 Bock FJ, Chang P. Macrophage activation: on par with LPS. Chem Biol 2015;22:432-3. [PMID: 25910238 DOI: 10.1016/j.chembiol.2015.04.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
43 Oztopcu-Vatan P, Sayitoglu M, Gunindi M, Inan E. Cytotoxic and apoptotic effects of menadione on rat hepatocellular carcinoma cells. Cytotechnology 2015;67:1003-9. [PMID: 24828824 DOI: 10.1007/s10616-014-9739-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
44 Ke Y, Zhang J, Lv X, Zeng X, Ba X. Novel insights into PARPs in gene expression: regulation of RNA metabolism. Cell Mol Life Sci 2019;76:3283-99. [PMID: 31055645 DOI: 10.1007/s00018-019-03120-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
45 Czapski GA, Adamczyk A, Strosznajder RP, Strosznajder JB. Expression and activity of PARP family members in the hippocampus during systemic inflammation: Their role in the regulation of prooxidative genes. Neurochemistry International 2013;62:664-73. [DOI: 10.1016/j.neuint.2013.01.020] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
46 Meyer-Ficca ML, Lonchar JD, Ihara M, Bader JJ, Meyer RG. Alteration of poly(ADP-ribose) metabolism affects murine sperm nuclear architecture by impairing pericentric heterochromatin condensation. Chromosoma 2013;122:319-35. [PMID: 23729169 DOI: 10.1007/s00412-013-0416-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
47 Ruiz PD, Hamilton GA, Park JW, Gamble MJ. MacroH2A1 Regulation of Poly(ADP-Ribose) Synthesis and Stability Prevents Necrosis and Promotes DNA Repair. Mol Cell Biol 2019;40:e00230-19. [PMID: 31636161 DOI: 10.1128/MCB.00230-19] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
48 Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC, Fischer D, Caflisch A, Hassa PO, Lüscher B, Hottiger MO. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 2013;20:502-7. [PMID: 23474714 DOI: 10.1038/nsmb.2521] [Cited by in Crossref: 206] [Cited by in F6Publishing: 198] [Article Influence: 22.9] [Reference Citation Analysis]
49 Czerwińska J, Nowak M, Wojtczak P, Dziuban-Lech D, Cieśla JM, Kołata D, Gajewska B, Barańczyk-Kuźma A, Robinson AR, Shane HL, Gregg SQ, Rigatti LH, Yousefzadeh MJ, Gurkar AU, McGowan SJ, Kosicki K, Bednarek M, Zarakowska E, Gackowski D, Oliński R, Speina E, Niedernhofer LJ, Tudek B. ERCC1-deficient cells and mice are hypersensitive to lipid peroxidation. Free Radic Biol Med 2018;124:79-96. [PMID: 29860127 DOI: 10.1016/j.freeradbiomed.2018.05.088] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
50 Bhattacharjee RN, Banerjee B, Akira S, Hande MP. Telomere-mediated chromosomal instability triggers TLR4 induced inflammation and death in mice. PLoS One 2010;5:e11873. [PMID: 20686699 DOI: 10.1371/journal.pone.0011873] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
51 Strosznajder JB, Cieslik M, Cakala M, Jesko H, Eckert A, Strosznajder RP. Lipoxygenases and poly(ADP-ribose) polymerase in amyloid beta cytotoxicity. Neurochem Res 2011;36:839-48. [PMID: 21287270 DOI: 10.1007/s11064-011-0412-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]