BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Paul S, Smilenov LB, Elliston CD, Amundson SA. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model. Radiat Res 2015;184:24-32. [PMID: 26114327 DOI: 10.1667/RR14044.1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016;186:423-35. [PMID: 27710702 DOI: 10.1667/RR14452.1] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
2 Zhao Z, Liu Z, Zhou Y, Wang J, Zhang Y, Yu X, Wu R, Guo C, Qin A, Bawa G, Sun X. Creation of cotton mutant library based on linear electron accelerator radiation mutation. Biochemistry and Biophysics Reports 2022;30:101228. [DOI: 10.1016/j.bbrep.2022.101228] [Reference Citation Analysis]
3 Langen B, Vorontsov E, Spetz J, Swanpalmer J, Sihlbom C, Helou K, Forssell-Aronsson E. Age and sex effects across the blood proteome after ionizing radiation exposure can bias biomarker screening and risk assessment. Sci Rep 2022;12:7000. [PMID: 35487913 DOI: 10.1038/s41598-022-10271-3] [Reference Citation Analysis]
4 Broustas CG, Xu Y, Harken AD, Chowdhury M, Garty G, Amundson SA. Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model. Radiat Res 2017;187:433-40. [PMID: 28140791 DOI: 10.1667/RR0005.1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 3.2] [Reference Citation Analysis]
5 Edmondson DA, Karski EE, Kohlgruber A, Koneru H, Matthay KK, Allen S, Hartmann CL, Peterson LE, DuBois SG, Coleman MA. Transcript Analysis for Internal Biodosimetry Using Peripheral Blood from Neuroblastoma Patients Treated with (131)I-mIBG, a Targeted Radionuclide. Radiat Res 2016;186:235-44. [PMID: 27556353 DOI: 10.1667/RR14263.1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
6 Goudarzi M, Chauthe S, Strawn SJ, Weber WM, Brenner DJ, Fornace AJ. Quantitative Metabolomic Analysis of Urinary Citrulline and Calcitroic Acid in Mice after Exposure to Various Types of Ionizing Radiation. Int J Mol Sci 2016;17:E782. [PMID: 27213362 DOI: 10.3390/ijms17050782] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
7 Lacombe J, Sima C, Amundson SA, Zenhausern F. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS One 2018;13:e0198851. [PMID: 29879226 DOI: 10.1371/journal.pone.0198851] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 7.8] [Reference Citation Analysis]
8 Macaeva E, Tabury K, Michaux A, Janssen A, Averbeck N, Moreels M, De Vos WH, Baatout S, Quintens R. High-LET Carbon and Iron Ions Elicit a Prolonged and Amplified p53 Signaling and Inflammatory Response Compared to low-LET X-Rays in Human Peripheral Blood Mononuclear Cells. Front Oncol 2021;11:768493. [PMID: 34888245 DOI: 10.3389/fonc.2021.768493] [Reference Citation Analysis]
9 Huang R, Xiang J, Zhou P. Vitamin D, gut microbiota, and radiation-related resistance: a love-hate triangle. J Exp Clin Cancer Res 2019;38:493. [PMID: 31843023 DOI: 10.1186/s13046-019-1499-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
10 Brooks AL, Hoel DG, Preston RJ. The role of dose rate in radiation cancer risk: evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation. Int J Radiat Biol 2016;92:405-26. [PMID: 27266588 DOI: 10.1080/09553002.2016.1186301] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 9.3] [Reference Citation Analysis]
11 Ghandhi SA, Turner HC, Shuryak I, Dugan GO, Bourland JD, Olson JD, Tooze JA, Morton SR, Batinic-Haberle I, Cline JM, Amundson SA. Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS One 2018;13:e0191402. [PMID: 29351567 DOI: 10.1371/journal.pone.0191402] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
12 Ghandhi SA, Smilenov L, Shuryak I, Pujol-Canadell M, Amundson SA. Discordant gene responses to radiation in humans and mice and the role of hematopoietically humanized mice in the search for radiation biomarkers. Sci Rep 2019;9:19434. [PMID: 31857640 DOI: 10.1038/s41598-019-55982-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
13 Broustas CG, Xu Y, Harken AD, Garty G, Amundson SA. Comparison of gene expression response to neutron and x-ray irradiation using mouse blood. BMC Genomics 2017;18:2. [PMID: 28049433 DOI: 10.1186/s12864-016-3436-1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
14 Paul S, Kleiman NJ, Amundson SA. Transcriptomic responses in mouse blood during the first week after in vivo gamma irradiation. Sci Rep 2019;9:18364. [PMID: 31797975 DOI: 10.1038/s41598-019-54780-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
15 Suresh Kumar MA, Laiakis EC, Ghandhi SA, Morton SR, Fornace AJ Jr, Amundson SA. Gene Expression in Parp1 Deficient Mice Exposed to a Median Lethal Dose of Gamma Rays. Radiat Res 2018;190:53-62. [PMID: 29746213 DOI: 10.1667/RR14990.1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Ghandhi SA, Shuryak I, Morton SR, Amundson SA, Brenner DJ. New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells. Sci Rep 2019;9:18441. [PMID: 31804590 DOI: 10.1038/s41598-019-54967-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
17 Abend M, Amundson SA, Badie C, Brzoska K, Hargitai R, Kriehuber R, Schüle S, Kis E, Ghandhi SA, Lumniczky K, Morton SR, O'Brien G, Oskamp D, Ostheim P, Siebenwirth C, Shuryak I, Szatmári T, Unverricht-Yeboah M, Ainsbury E, Bassinet C, Kulka U, Oestreicher U, Ristic Y, Trompier F, Wojcik A, Waldner L, Port M. Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise. Sci Rep 2021;11:9756. [PMID: 33963206 DOI: 10.1038/s41598-021-88403-4] [Reference Citation Analysis]
18 Garty G, Xu Y, Elliston C, Marino SA, Randers-Pehrson G, Brenner DJ. Mice and the A-Bomb: Irradiation Systems for Realistic Exposure Scenarios. Radiat Res 2017;187:465-75. [PMID: 28211757 DOI: 10.1667/RR008CC.1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
19 Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. Life Sci Space Res (Amst) 2016;9:19-47. [PMID: 27345199 DOI: 10.1016/j.lssr.2016.05.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]