BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx. 2005;2:108-119. [PMID: 15717062 DOI: 10.1602/neurorx.2.1.108] [Cited by in Crossref: 287] [Cited by in F6Publishing: 249] [Article Influence: 16.9] [Reference Citation Analysis]
Number Citing Articles
1 Guarnieri D, Falanga A, Muscetti O, Tarallo R, Fusco S, Galdiero M, Galdiero S, Netti PA. Shuttle-Mediated Nanoparticle Delivery to the Blood-Brain Barrier. Small 2013;9:853-62. [DOI: 10.1002/smll.201201870] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 6.8] [Reference Citation Analysis]
2 Ghosh SB, Bandyopadhyay-ghosh S, Sain M. Composites. In: Auras R, Lim L, Selke SEM, Tsuji H, editors. Poly(Lactic Acid). Hoboken: John Wiley & Sons, Inc.; 2010. pp. 293-310. [DOI: 10.1002/9780470649848.ch18] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
3 Tseng YY, Kao YC, Liao JY, Chen WA, Liu SJ. Biodegradable drug-eluting poly[lactic-co-glycol acid] nanofibers for the sustainable delivery of vancomycin to brain tissue: in vitro and in vivo studies. ACS Chem Neurosci 2013;4:1314-21. [PMID: 23815098 DOI: 10.1021/cn400108q] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
4 Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 2009;61:428-37. [PMID: 19376175 DOI: 10.1016/j.addr.2009.03.009] [Cited by in Crossref: 1212] [Cited by in F6Publishing: 1081] [Article Influence: 93.2] [Reference Citation Analysis]
5 Blumen SR, Cheng K, Ramos-Nino ME, Taatjes DJ, Weiss DJ, Landry CC, Mossman BT. Unique uptake of acid-prepared mesoporous spheres by lung epithelial and mesothelioma cells. Am J Respir Cell Mol Biol 2007;36:333-42. [PMID: 17038662 DOI: 10.1165/rcmb.2006-0319OC] [Cited by in Crossref: 52] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
6 Kong SD, Lee J, Ramachandran S, Eliceiri BP, Shubayev VI, Lal R, Jin S. Magnetic targeting of nanoparticles across the intact blood-brain barrier. J Control Release. 2012;164:49-57. [PMID: 23063548 DOI: 10.1016/j.jconrel.2012.09.021] [Cited by in Crossref: 124] [Cited by in F6Publishing: 107] [Article Influence: 12.4] [Reference Citation Analysis]
7 Tucker IG. Drug delivery to the brain via the blood-brain barrier: a review of the literature and some recent patent disclosures. Ther Deliv 2011;2:311-27. [PMID: 22834002 DOI: 10.4155/tde.11.3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
8 Pencheva D, Bryaskova R, Kantardjiev T. Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Materials Science and Engineering: C 2012;32:2048-51. [DOI: 10.1016/j.msec.2012.05.016] [Cited by in Crossref: 55] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
9 Liu L, Zhang X, Li W, Sun H, Lou Y, Zhang X, Li F. Transferrin receptor antibody-modified α-cobrotoxin-loaded nanoparticles enable drug delivery across the blood–brain barrier by intranasal administration. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-2059-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
10 Jayagopal A, Shastri P. Nanoengineering of Drug Delivery Systems. In: Thassu D, editor. Nanoparticulate Drug Delivery Systems. CRC Press; 2007. pp. 99-109. [DOI: 10.1201/9781420008449.ch7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
11 Dufès C, Al Robaian M, Somani S. Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells. Ther Deliv 2013;4:629-40. [PMID: 23647279 DOI: 10.4155/tde.13.21] [Cited by in Crossref: 63] [Cited by in F6Publishing: 57] [Article Influence: 7.0] [Reference Citation Analysis]
12 Li Y, Scott J, Chen YT, Guo L, Zhao M, Wang X, Lu W. Direct Dry-Grinding Synthesis of Monodisperse Lipophilic CuS Nanoparticles. Mater Chem Phys 2015;162:671-6. [PMID: 26339112 DOI: 10.1016/j.matchemphys.2015.06.041] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
13 Stevanovic M, Ignjatovic N, Jordovic B, Uskokovic D. Stereological analysis of the poly-(dl-lactide-co-glycolide) submicron sphere prepared by solvent/non-solvent chemical methods and centrifugal processing. J Mater Sci: Mater Med 2007;18:1339-44. [DOI: 10.1007/s10856-007-0156-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
14 Gordon AT, Lutz GE, Boninger ML, Cooper RA. Introduction to Nanotechnology: Potential Applications in Physical Medicine and Rehabilitation. American Journal of Physical Medicine & Rehabilitation 2007;86:225-41. [DOI: 10.1097/phm.0b013e318031ee1a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
15 Kwon KS, Nayab S, Lee H, Jeong JH. Synthesis and structural characterisation of zinc complexes bearing furanylmethyl and thiophenylmethyl derivatives of (R,R)-1,2-diaminocyclohexanes for stereoselective polymerisation of poly(rac-lactide). Polyhedron 2014;77:32-8. [DOI: 10.1016/j.poly.2014.03.055] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
16 Opoku-Damoah Y, Wang R, Zhou J, Ding Y. Versatile Nanosystem-Based Cancer Theranostics: Design Inspiration and Predetermined Routing. Theranostics 2016;6:986-1003. [PMID: 27217832 DOI: 10.7150/thno.14860] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
17 Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015;23:865-87. [PMID: 25835469 DOI: 10.3109/1061186X.2015.1029930] [Cited by in Crossref: 38] [Cited by in F6Publishing: 16] [Article Influence: 5.4] [Reference Citation Analysis]
18 Banerjee S, Roy S, Bhaumik KN, Pillai J. Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis. Journal of Drug Targeting 2020;28:55-69. [DOI: 10.1080/1061186x.2019.1613409] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 6.7] [Reference Citation Analysis]
19 T de Barros C, Rios AC, Alves TFR, Batain F, Crescencio KMM, Lopes LJ, Zielińska A, Severino P, G Mazzola P, Souto EB, Chaud MV. Cachexia: Pathophysiology and Ghrelin Liposomes for Nose-to-Brain Delivery. Int J Mol Sci 2020;21:E5974. [PMID: 32825177 DOI: 10.3390/ijms21175974] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Bommana MM, Kirthivasan B, Squillante E. In vivo brain microdialysis to evaluate FITC-dextran encapsulated immunopegylated nanoparticles. Drug Delivery 2012;19:298-306. [DOI: 10.3109/10717544.2012.714812] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
21 Harush-frenkel O, Rozentur E, Benita S, Altschuler Y. Surface Charge of Nanoparticles Determines Their Endocytic and Transcytotic Pathway in Polarized MDCK Cells. Biomacromolecules 2008;9:435-43. [DOI: 10.1021/bm700535p] [Cited by in Crossref: 288] [Cited by in F6Publishing: 270] [Article Influence: 20.6] [Reference Citation Analysis]
22 Sharma HS, Ali SF, Dong W, Tian ZR, Patnaik R, Patnaik S, Sharma A, Boman A, Lek P, Seifert E, Lundstedt T. Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Ann N Y Acad Sci 2007;1122:197-218. [PMID: 18077574 DOI: 10.1196/annals.1403.014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 3.2] [Reference Citation Analysis]
23 Orthmann A, Fichtner I, Zeisig R. Improving the transport of chemotherapeutic drugs across the blood-brain barrier. Expert Rev Clin Pharmacol 2011;4:477-90. [PMID: 22114857 DOI: 10.1586/ecp.11.26] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
24 Koseva NS, Rydz J, Stoyanova EV, Mitova VA. Hybrid protein-synthetic polymer nanoparticles for drug delivery. Adv Protein Chem Struct Biol 2015;98:93-119. [PMID: 25819277 DOI: 10.1016/bs.apcsb.2014.12.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
25 Vlieghe P, Khrestchatisky M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev 2013;33:457-516. [PMID: 22434495 DOI: 10.1002/med.21252] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 4.9] [Reference Citation Analysis]
26 Yang J, Zeng Y, Li Y, Song C, Zhu W, Guan H, Li X. Intravascular site-specific delivery of a therapeutic antisense for the inhibition of restenosis. Eur J Pharm Sci 2008;35:427-34. [PMID: 18848882 DOI: 10.1016/j.ejps.2008.09.003] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
27 Borowik A, Butowska K, Konkel K, Banasiuk R, Derewonko N, Wyrzykowski D, Davydenko M, Cherepanov V, Styopkin V, Prylutskyy Y, Pohl P, Krolicka A, Piosik J. The Impact of Surface Functionalization on the Biophysical Properties of Silver Nanoparticles. Nanomaterials (Basel) 2019;9:E973. [PMID: 31277307 DOI: 10.3390/nano9070973] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
28 Li X, Xu S, Zhang Z, Schluesener HJ. Apoptosis induced by titanium dioxide nanoparticles in cultured murine microglia N9 cells. Chin Sci Bull 2009;54:3830-6. [DOI: 10.1007/s11434-009-0548-x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
29 Bhattacherjee A, Dhara K, Chakraborti AS. Argpyrimidine-tagged rutin-encapsulated biocompatible (ethylene glycol dimers) nanoparticles: Synthesis, characterization and evaluation for targeted drug delivery. International Journal of Pharmaceutics 2016;509:507-17. [DOI: 10.1016/j.ijpharm.2016.05.042] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
30 Bose T, Latawiec D, Mondal PP, Mandal S. Overview of nano-drugs characteristics for clinical application: the journey from the entry to the exit point. J Nanopart Res 2014;16. [DOI: 10.1007/s11051-014-2527-7] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
31 Kealy J, Campbell M. The Blood-Brain Barrier in Glioblastoma: Pathology and Therapeutic Implications. In: Tivnan A, editor. Resistance to Targeted Therapies Against Adult Brain Cancers. Cham: Springer International Publishing; 2016. pp. 69-87. [DOI: 10.1007/978-3-319-46505-0_4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Abdelrahman FE, Elsayed I, Gad MK, Badr A, Mohamed MI. Investigating the cubosomal ability for transnasal brain targeting: In vitro optimization, ex vivo permeation and in vivo biodistribution. Int J Pharm 2015;490:281-91. [PMID: 26026251 DOI: 10.1016/j.ijpharm.2015.05.064] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
33 Costantino L. Drug delivery to the CNS and polymeric nanoparticulate carriers. Future Medicinal Chemistry 2010;2:1681-701. [DOI: 10.4155/fmc.10.249] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
34 Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. Journal of Controlled Release 2007;118:38-53. [DOI: 10.1016/j.jconrel.2006.11.015] [Cited by in Crossref: 142] [Cited by in F6Publishing: 136] [Article Influence: 9.5] [Reference Citation Analysis]
35 Khan AM, Ahmad FJ, Panda AK, Talegaonkar S. Investigation of imatinib loaded surface decorated biodegradable nanocarriers against glioblastoma cell lines: Intracellular uptake and cytotoxicity studies. International Journal of Pharmaceutics 2016;507:61-71. [DOI: 10.1016/j.ijpharm.2016.05.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
36 Yilmaz S, Ichedef C, Karatay KB, Teksöz S. Polymer Coated Iron Nanoparticles: Radiolabeling & In vitro Studies. Curr Radiopharm 2021;14:37-45. [PMID: 32351192 DOI: 10.2174/1874471013666200430094113] [Reference Citation Analysis]
37 Poovaiah N, Davoudi Z, Peng H, Schlichtmann B, Mallapragada S, Narasimhan B, Wang Q. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale 2018;10:16962-83. [DOI: 10.1039/c8nr04073g] [Cited by in Crossref: 59] [Cited by in F6Publishing: 18] [Article Influence: 14.8] [Reference Citation Analysis]
38 Kratzer I, Wernig K, Panzenboeck U, Bernhart E, Reicher H, Wronski R, Windisch M, Hammer A, Malle E, Zimmer A, Sattler W. Apolipoprotein A-I coating of protamine-oligonucleotide nanoparticles increases particle uptake and transcytosis in an in vitro model of the blood-brain barrier. J Control Release 2007;117:301-11. [PMID: 17239472 DOI: 10.1016/j.jconrel.2006.11.020] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 4.8] [Reference Citation Analysis]
39 Crawford L, Higgins J, Putnam D. A Simple and Sensitive Method to Quantify Biodegradable Nanoparticle Biodistribution using Europium Chelates. Sci Rep 2015;5:13177. [PMID: 26346817 DOI: 10.1038/srep13177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
40 Da Silva-Candal A, Argibay B, Iglesias-Rey R, Vargas Z, Vieites-Prado A, López-Arias E, Rodríguez-Castro E, López-Dequidt I, Rodríguez-Yáñez M, Piñeiro Y, Sobrino T, Campos F, Rivas J, Castillo J. Vectorized nanodelivery systems for ischemic stroke: a concept and a need. J Nanobiotechnology 2017;15:30. [PMID: 28399863 DOI: 10.1186/s12951-017-0264-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
41 Alavian F, Shams N. Oral and Intra-nasal Administration of Nanoparticles in the Cerebral Ischemia Treatment in Animal Experiments: Considering its Advantages and Disadvantages. Curr Clin Pharmacol 2020;15:20-9. [PMID: 31272358 DOI: 10.2174/1574884714666190704115345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Tseng YY, Su CH, Yang ST, Huang YC, Lee WH, Wang YC, Liu SC, Liu SJ. Advanced interstitial chemotherapy combined with targeted treatment of malignant glioma in rats by using drug-loaded nanofibrous membranes. Oncotarget 2016;7:59902-16. [PMID: 27494894 DOI: 10.18632/oncotarget.10989] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
43 Tseng YY, Huang YC, Yang TC, Yang ST, Liu SC, Chang TM, Kau YC, Liu SJ. Concurrent Chemotherapy of Malignant Glioma in Rats by Using Multidrug-Loaded Biodegradable Nanofibrous Membranes. Sci Rep 2016;6:30630. [PMID: 27471070 DOI: 10.1038/srep30630] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
44 Bunker A. Molecular Modeling as a Tool to Understand the Role of Poly(Ethylene) Glycol in Drug Delivery. In: Ouyang D, Smith SC, editors. Computational Pharmaceutics. Chichester: John Wiley & Sons, Ltd; 2015. pp. 217-33. [DOI: 10.1002/9781118573983.ch11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
45 Khosravi S, Bardania H, Mansouri R, Tahoori MT, Ghafari F, Mohammadzdeh A, Fouani MH, Pourfathollah AA, Soleimani M. Switch off inflammation in spleen cells with CD40-targeted PLGA nanoparticles containing dimethyl fumarate. Colloids Surf B Biointerfaces 2021;208:112091. [PMID: 34507070 DOI: 10.1016/j.colsurfb.2021.112091] [Reference Citation Analysis]
46 Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006;23:1417-50. [PMID: 16779701 DOI: 10.1007/s11095-006-0284-8] [Cited by in Crossref: 596] [Cited by in F6Publishing: 477] [Article Influence: 37.3] [Reference Citation Analysis]
47 Jardon S, García CG, Quintanar D, Nieto JL, Juárez ML, Mendoza SE. Effect of two glycyrrhizinic acid nanoparticle carriers on MARC-145 cells actin filaments. Appl Nanosci 2018;8:1111-21. [PMID: 32226703 DOI: 10.1007/s13204-018-0758-0] [Reference Citation Analysis]
48 Liang XJ, Chen C, Zhao Y, Jia L, Wang PC. Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr Drug Metab 2008;9:697-709. [PMID: 18855608 DOI: 10.2174/138920008786049230] [Cited by in Crossref: 79] [Cited by in F6Publishing: 61] [Article Influence: 6.1] [Reference Citation Analysis]
49 Kura AU, Ain NM, Hussein MZ, Fakurazi S, Hussein-Al-Ali SH. Toxicity and metabolism of layered double hydroxide intercalated with levodopa in a Parkinson's disease model. Int J Mol Sci 2014;15:5916-27. [PMID: 24722565 DOI: 10.3390/ijms15045916] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
50 Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 2007;49:217-29. [PMID: 17868963 DOI: 10.1016/j.yrtph.2007.07.006] [Cited by in Crossref: 266] [Cited by in F6Publishing: 205] [Article Influence: 17.7] [Reference Citation Analysis]
51 Varenne F, Botton J, Merlet C, Hillaireau H, Legrand F, Barratt G, Vauthier C. Size of monodispersed nanomaterials evaluated by dynamic light scattering: Protocol validated for measurements of 60 and 203 nm diameter nanomaterials is now extended to 100 and 400 nm. International Journal of Pharmaceutics 2016;515:245-53. [DOI: 10.1016/j.ijpharm.2016.10.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
52 Mei H, Shi W, Pang Z, Wang H, Lu W, Jiang X, Deng J, Guo T, Hu Y. EGFP-EGF1 protein-conjugated PEG-PLA nanoparticles for tissue factor targeted drug delivery. Biomaterials 2010;31:5619-26. [PMID: 20413154 DOI: 10.1016/j.biomaterials.2010.03.055] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
53 Paiva AM, Pinto RA, Teixeira M, Barbosa CM, Lima RT, Vasconcelos MH, Sousa E, Pinto M. Development of noncytotoxic PLGA nanoparticles to improve the effect of a new inhibitor of p53–MDM2 interaction. International Journal of Pharmaceutics 2013;454:394-402. [DOI: 10.1016/j.ijpharm.2013.07.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
54 Soni S, Babbar AK, Sharma RK, Maitra A. Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. Journal of Drug Targeting 2008;14:87-95. [DOI: 10.1080/10611860600635608] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 3.7] [Reference Citation Analysis]
55 Shah RB, Khan MA. Nanopharmaceuticals: Challenges and Regulatory Perspective. In: de Villiers MM, Aramwit P, Kwon GS, editors. Nanotechnology in Drug Delivery. New York: Springer; 2009. pp. 621-46. [DOI: 10.1007/978-0-387-77668-2_21] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
56 Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021;11:2306-25. [PMID: 34522589 DOI: 10.1016/j.apsb.2020.11.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Gondim BLC, da Silva Catarino J, de Sousa MAD, de Oliveira Silva M, Lemes MR, de Carvalho-Costa TM, de Lima Nascimento TR, Machado JR, Rodrigues V, Oliveira CJF, Cançado Castellano LR, da Silva MV. Nanoparticle-Mediated Drug Delivery: Blood-Brain Barrier as the Main Obstacle to Treating Infectious Diseases in CNS. Curr Pharm Des 2019;25:3983-96. [PMID: 31612822 DOI: 10.2174/1381612825666191014171354] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
58 Newton HB. Advances in strategies to improve drug delivery to brain tumors. Expert Review of Neurotherapeutics 2014;6:1495-509. [DOI: 10.1586/14737175.6.10.1495] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
59 Mendoza KC, McLane VD, Kim S, Griffin JD. Invitro application of gold nanoprobes in live neurons for phenotypical classification, connectivity assessment, and electrophysiological recording. Brain Res 2010;1325:19-27. [PMID: 20170645 DOI: 10.1016/j.brainres.2010.02.041] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
60 Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021;13:1183. [PMID: 34452143 DOI: 10.3390/pharmaceutics13081183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
61 Yadav KS, Mishra DK, Deshpande A, Pethe AM. Levels of Drug Targeting. Basic Fundamentals of Drug Delivery. Elsevier; 2019. pp. 269-305. [DOI: 10.1016/b978-0-12-817909-3.00007-8] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
62 Ghosh A, Sarkar S, Mandal AK, Das N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One 2013;8:e57735. [PMID: 23620721 DOI: 10.1371/journal.pone.0057735] [Cited by in Crossref: 79] [Cited by in F6Publishing: 77] [Article Influence: 8.8] [Reference Citation Analysis]
63 Nayab S, Lee H, Jeong JH. Synthesis and structural characterization of a dichloro zinc complex of N,N′-bis-(2,6-dichloro-benzyl)-(R,R)-1,2-diaminocyclohexane: Application to ring opening polymerization of rac-lactide. Polyhedron 2012;31:682-7. [DOI: 10.1016/j.poly.2011.10.035] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
64 Le Broc-ryckewaert D, Carpentier R, Lipka E, Daher S, Vaccher C, Betbeder D, Furman C. Development of innovative paclitaxel-loaded small PLGA nanoparticles: Study of their antiproliferative activity and their molecular interactions on prostatic cancer cells. International Journal of Pharmaceutics 2013;454:712-9. [DOI: 10.1016/j.ijpharm.2013.05.018] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]
65 Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Hamano N, Li S, Chougule M, Shoyele SA, Gupta U, Ajazuddin, Alexander A. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opinion on Drug Delivery 2018;15:589-617. [DOI: 10.1080/17425247.2018.1471058] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 9.5] [Reference Citation Analysis]
66 Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiology of Disease 2010;37:48-57. [DOI: 10.1016/j.nbd.2009.07.028] [Cited by in Crossref: 496] [Cited by in F6Publishing: 452] [Article Influence: 41.3] [Reference Citation Analysis]
67 Li X, Wang L, Fan Y, Feng Q, Cui F. Biocompatibility and Toxicity of Nanoparticles and Nanotubes. Journal of Nanomaterials 2012;2012:1-19. [DOI: 10.1155/2012/548389] [Cited by in Crossref: 76] [Cited by in F6Publishing: 33] [Article Influence: 7.6] [Reference Citation Analysis]
68 Ramanathan S, Archunan G, Sivakumar M, Tamil Selvan S, Fred AL, Kumar S, Gulyás B, Padmanabhan P. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018;13:5561-76. [PMID: 30271147 DOI: 10.2147/IJN.S149022] [Cited by in Crossref: 50] [Cited by in F6Publishing: 21] [Article Influence: 12.5] [Reference Citation Analysis]
69 Tseng YY, Liao JY, Chen WA, Kao YC, Liu SJ. Sustainable release of carmustine from biodegradable poly[((D,L))-lactide-co-glycolide] nanofibrous membranes in the cerebral cavity: in vitro and in vivo studies. Expert Opin Drug Deliv 2013;10:879-88. [PMID: 23289446 DOI: 10.1517/17425247.2013.758102] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
70 Branda F, Silvestri B, Luciani G, Costantini A, Tescione F. Synthesis structure and stability of amino functionalized PEGylated silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010;367:12-6. [DOI: 10.1016/j.colsurfa.2010.05.036] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
71 Dan N. Vesicle-based drug carriers. Design and Development of New Nanocarriers. Elsevier; 2018. pp. 1-55. [DOI: 10.1016/b978-0-12-813627-0.00001-6] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
72 Linazasoro G; Nanotechnologies for Neurodegenerative Diseases Study Group of the Basque Country (NANEDIS). Potential applications of nanotechnologies to Parkinson's disease therapy. Parkinsonism Relat Disord 2008;14:383-92. [PMID: 18329315 DOI: 10.1016/j.parkreldis.2007.11.012] [Cited by in Crossref: 44] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
73 Sonali, Viswanadh MK, Singh RP, Agrawal P, Mehata AK, Pawde DM, Narendra, Sonkar R, Muthu MS. Nanotheranostics: Emerging Strategies for Early Diagnosis and Therapy of Brain Cancer. Nanotheranostics 2018;2:70-86. [PMID: 29291164 DOI: 10.7150/ntno.21638] [Cited by in Crossref: 53] [Cited by in F6Publishing: 37] [Article Influence: 13.3] [Reference Citation Analysis]
74 Pradal J, Maudens P, Gabay C, Seemayer CA, Jordan O, Allémann E. Effect of particle size on the biodistribution of nano- and microparticles following intra-articular injection in mice. Int J Pharm 2016;498:119-29. [PMID: 26685724 DOI: 10.1016/j.ijpharm.2015.12.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 5.4] [Reference Citation Analysis]
75 Vauthier C, Labarre D, Ponchel G. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 2007;15:641-63. [PMID: 18041633 DOI: 10.1080/10611860701603372] [Cited by in Crossref: 81] [Cited by in F6Publishing: 68] [Article Influence: 5.8] [Reference Citation Analysis]
76 Behl A, Parmar VS, Malhotra S, Chhillar AK. Biodegradable diblock copolymeric PEG-PCL nanoparticles: Synthesis, characterization and applications as anticancer drug delivery agents. Polymer 2020;207:122901. [DOI: 10.1016/j.polymer.2020.122901] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
77 Hu K, Li J, Shen Y, Lu W, Gao X, Zhang Q, Jiang X. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release 2009;134:55-61. [PMID: 19038299 DOI: 10.1016/j.jconrel.2008.10.016] [Cited by in Crossref: 247] [Cited by in F6Publishing: 239] [Article Influence: 17.6] [Reference Citation Analysis]
78 Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for Parkinson's disease: a mini review. J Drug Target 2015;23:775-88. [PMID: 25758751 DOI: 10.3109/1061186X.2015.1020809] [Cited by in Crossref: 41] [Cited by in F6Publishing: 11] [Article Influence: 5.9] [Reference Citation Analysis]
79 Zheng YB, Kiraly B, Weiss PS, Huang TJ. Molecular plasmonics for biology and nanomedicine. Nanomedicine (Lond) 2012;7:751-70. [PMID: 22630155 DOI: 10.2217/nnm.12.30] [Cited by in Crossref: 95] [Cited by in F6Publishing: 65] [Article Influence: 9.5] [Reference Citation Analysis]
80 Singh A, Chokriwal A, Sharma MM, Jain D, Saxena J, Stephen BJ. Therapeutic Role and Drug Delivery Potential of Neuroinflammation as a Target in Neurodegenerative Disorders. ACS Chem Neurosci 2017;8:1645-55. [DOI: 10.1021/acschemneuro.7b00144] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
81 Malcor J, Payrot N, David M, Faucon A, Abouzid K, Jacquot G, Floquet N, Debarbieux F, Rougon G, Martinez J, Khrestchatisky M, Vlieghe P, Lisowski V. Chemical Optimization of New Ligands of the Low-Density Lipoprotein Receptor as Potential Vectors for Central Nervous System Targeting. J Med Chem 2012;55:2227-41. [DOI: 10.1021/jm2014919] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 4.7] [Reference Citation Analysis]
82 Chen Y, Wang F, Benson HAE, Benson H, Toth I. Effect of formulation factors on incorporation of the hydrophilic peptide dalargin into PLGA and mPEG-PLGA nanoparticles. Biopolymers 2008;90:644-50. [DOI: 10.1002/bip.21013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
83 Ditto AJ, Shah PN, Yun YH. Non-viral gene delivery using nanoparticles. Expert Opin Drug Deliv 2009;6:1149-60. [PMID: 19780712 DOI: 10.1517/17425240903241796] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 4.7] [Reference Citation Analysis]
84 Tseng YY, Wang YC, Su CH, Yang TC, Chang TM, Kau YC, Liu SJ. Concurrent delivery of carmustine, irinotecan, and cisplatin to the cerebral cavity using biodegradable nanofibers: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2015;134:254-61. [PMID: 26209775 DOI: 10.1016/j.colsurfb.2015.06.055] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
85 Varenne F, Rustique E, Botton J, Coty JB, Lanusse G, Ait Lahcen M, Rio L, Zandanel C, Lemarchand C, Germain M, Negri L, Couffin AC, Barratt G, Vauthier C. Towards quality assessed characterization of nanomaterial: Transfer of validated protocols for size measurement by dynamic light scattering and evaluation of zeta potential by electrophoretic light scattering. Int J Pharm 2017;528:299-311. [PMID: 28596143 DOI: 10.1016/j.ijpharm.2017.06.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
86 Küçüktürkmen B, Devrim B, Saka OM, Yilmaz Ş, Arsoy T, Bozkir A. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells. Drug Dev Ind Pharm 2017;43:12-21. [PMID: 27277750 DOI: 10.1080/03639045.2016.1200069] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
87 Tajes M, Ramos-Fernández E, Weng-Jiang X, Bosch-Morató M, Guivernau B, Eraso-Pichot A, Salvador B, Fernàndez-Busquets X, Roquer J, Muñoz FJ. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014;31:152-67. [PMID: 25046533 DOI: 10.3109/09687688.2014.937468] [Cited by in Crossref: 127] [Cited by in F6Publishing: 105] [Article Influence: 15.9] [Reference Citation Analysis]
88 Paka GD, Ramassamy C. Optimization of Curcumin-Loaded PEG-PLGA Nanoparticles by GSH Functionalization: Investigation of the Internalization Pathway in Neuronal Cells. Mol Pharm 2017;14:93-106. [PMID: 27744707 DOI: 10.1021/acs.molpharmaceut.6b00738] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
89 Çetin M, Aytekin E, Yavuz B, Bozdağ-pehlivan S. Nanoscience in Targeted Brain Drug Delivery. Nanotechnology Methods for Neurological Diseases and Brain Tumors. Elsevier; 2017. pp. 117-47. [DOI: 10.1016/b978-0-12-803796-6.00007-1] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
90 Geldenhuys W, Mbimba T, Bui T, Harrison K, Sutariya V. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. Journal of Drug Targeting 2011;19:837-45. [DOI: 10.3109/1061186x.2011.589435] [Cited by in Crossref: 80] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
91 Krol S. Challenges in drug delivery to the brain: Nature is against us. Journal of Controlled Release 2012;164:145-55. [DOI: 10.1016/j.jconrel.2012.04.044] [Cited by in Crossref: 84] [Cited by in F6Publishing: 81] [Article Influence: 8.4] [Reference Citation Analysis]
92 Chia YC, Anjum CE, Yee HR, Kenisi Y, Chan MKS, Wong MBF, Pan SY. Stem Cell Therapy for Neurodegenerative Diseases: How Do Stem Cells Bypass the Blood-Brain Barrier and Home to the Brain? Stem Cells Int 2020;2020:8889061. [PMID: 32952573 DOI: 10.1155/2020/8889061] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
93 Morsi NM, Ghorab DM, Badie HA. Brain targeted solid lipid nanoparticles for brain ischemia: preparation and in vitro characterization. Pharm Dev Technol 2013;18:736-44. [PMID: 23477526 DOI: 10.3109/10837450.2012.734513] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
94 Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 2007;162:245-73. [PMID: 17645923 DOI: 10.1016/S0079-6123(06)62013-X] [Cited by in Crossref: 156] [Cited by in F6Publishing: 32] [Article Influence: 11.1] [Reference Citation Analysis]
95 Bansal A, Kapoor D, Kapil R, Chhabra N, Dhawan S. Design and development of paclitaxel-loaded bovine serum albumin nanoparticles for brain targeting. Acta Pharmaceutica 2011;61:141-56. [DOI: 10.2478/v10007-011-0012-8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
96 Singh P. Tumor targeting using canine parvovirus nanoparticles. Curr Top Microbiol Immunol 2009;327:123-41. [PMID: 19198573 DOI: 10.1007/978-3-540-69379-6_6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.2] [Reference Citation Analysis]
97 Bian J, Yuan Z, Chen X, Gao Y, Xu C, Shi J. Preparation of surface multiple-coated polylactide acid drug-loaded nanoparticles for intranasal delivery and evaluation on its brain-targeting efficiency. Drug Deliv 2016;23:269-76. [PMID: 24845477 DOI: 10.3109/10717544.2014.910566] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
98 Kashaju N, Kimathi M, Masanja VG. Modeling the Effect of Binding Kinetics in Spatial Drug Distribution in the Brain. Comput Math Methods Med 2021;2021:5533886. [PMID: 34285707 DOI: 10.1155/2021/5533886] [Reference Citation Analysis]
99 Hã¤rtig W, Kacza J, Paulke B, Grosche J, Bauer U, Hoffmann A, Elsinghorst PW, Gã¼tschow M. In vivo labelling of hippocampal β-amyloid in triple-transgenic mice with a fluorescent acetylcholinesterase inhibitor released from nanoparticles. European Journal of Neuroscience 2010;31:99-109. [DOI: 10.1111/j.1460-9568.2009.07038.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
100 Escalona-Rayo O, Fuentes-Vázquez P, Leyva-Gómez G, Cisneros B, Villalobos R, Magaña JJ, Quintanar-Guerrero D. Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process. Drug Dev Ind Pharm 2017;43:871-88. [PMID: 28142290 DOI: 10.1080/03639045.2017.1281949] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
101 Karkan D, Pfeifer C, Vitalis TZ, Arthur G, Ujiie M, Chen Q, Tsai S, Koliatis G, Gabathuler R, Jefferies WA. A unique carrier for delivery of therapeutic compounds beyond the blood-brain barrier. PLoS One 2008;3:e2469. [PMID: 18575595 DOI: 10.1371/journal.pone.0002469] [Cited by in Crossref: 66] [Cited by in F6Publishing: 56] [Article Influence: 4.7] [Reference Citation Analysis]
102 Ahmed T, Liu FF, He C, Abbasi AZ, Cai P, Rauth AM, Henderson JT, Wu XY. Optimizing the Design of Blood-Brain Barrier-Penetrating Polymer-Lipid-Hybrid Nanoparticles for Delivering Anticancer Drugs to Glioblastoma. Pharm Res 2021. [PMID: 34655006 DOI: 10.1007/s11095-021-03122-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Jose S, Sowmya S, Cinu TA, Aleykutty NA, Thomas S, Souto EB. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. Eur J Pharm Sci 2014;63:29-35. [PMID: 25010261 DOI: 10.1016/j.ejps.2014.06.024] [Cited by in Crossref: 67] [Cited by in F6Publishing: 55] [Article Influence: 8.4] [Reference Citation Analysis]
104 Costantino L, Tosi G, Ruozi B, Bondioli L, Vandelli MA, Forni F. Colloidal systems for CNS drug delivery. Nanoneuroscience and Nanoneuropharmacology. Elsevier; 2009. pp. 35-69. [DOI: 10.1016/s0079-6123(08)80003-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
105 Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. Journal of Controlled Release 2012;162:45-55. [DOI: 10.1016/j.jconrel.2012.05.051] [Cited by in Crossref: 198] [Cited by in F6Publishing: 195] [Article Influence: 19.8] [Reference Citation Analysis]
106 Raza K, Kumar P, Kumar N, Malik R. Pharmacokinetics and biodistribution of the nanoparticles. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Elsevier; 2017. pp. 165-86. [DOI: 10.1016/b978-0-08-100557-6.00009-2] [Cited by in Crossref: 15] [Article Influence: 3.0] [Reference Citation Analysis]
107 Gabathuler R. Development of new peptide vectors for the transport of therapeutic across the blood-brain barrier. Ther Deliv 2010;1:571-86. [PMID: 22833968 DOI: 10.4155/tde.10.35] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
108 Gupta A, Kumar V. New emerging trends in synthetic biodegradable polymers – Polylactide: A critique. European Polymer Journal 2007;43:4053-74. [DOI: 10.1016/j.eurpolymj.2007.06.045] [Cited by in Crossref: 653] [Cited by in F6Publishing: 414] [Article Influence: 43.5] [Reference Citation Analysis]
109 Kuo YC, Wang CC. Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain. Biotechnol Prog 2014;30:198-206. [PMID: 24167123 DOI: 10.1002/btpr.1834] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
110 Du W, Zhou L, Zhang Q, Liu X, Wei X, Li Y. Inorganic Nanomaterial for Biomedical Imaging of Brain Diseases. Molecules 2021;26:7340. [PMID: 34885919 DOI: 10.3390/molecules26237340] [Reference Citation Analysis]
111 Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. J Control Release 2016;227:23-37. [PMID: 26892752 DOI: 10.1016/j.jconrel.2016.02.026] [Cited by in Crossref: 130] [Cited by in F6Publishing: 121] [Article Influence: 21.7] [Reference Citation Analysis]
112 Sharma HS, Ali SF, Tian ZR, Patnaik R, Patnaik S, Sharma A, Boman A, Lek P, Seifert E, Lundstedt T. Nanowired-drug delivery enhances neuroprotective efficacy of compounds and reduces spinal cord edema formation and improves functional outcome following spinal cord injury in the rat. Acta Neurochir Suppl 2010;106:343-50. [PMID: 19812975 DOI: 10.1007/978-3-211-98811-4_63] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
113 Halder KK, Mandal B, Debnath MC, Bera H, Ghosh LK, Gupta BK. Chloramphenicol-incorporated poly lactide- co -glycolide (PLGA) nanoparticles: Formulation, characterization, technetium-99m labeling and biodistribution studies. Journal of Drug Targeting 2008;16:311-20. [DOI: 10.1080/10611860801899300] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
114 Lorenz S, Hauser CP, Autenrieth B, Weiss CK, Landfester K, Mailänder V. The Softer and More Hydrophobic the Better: Influence of the Side Chain of Polymethacrylate Nanoparticles for Cellular Uptake. Macromol Biosci 2010;10:1034-42. [DOI: 10.1002/mabi.201000099] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 4.3] [Reference Citation Analysis]
115 Shi W, Mei H, Deng J, Chen C, Wang H, Guo T, Zhang B, Pang Z, Jiang X, Wang X, Lei H, Hu Y. The delivery of thrombi-specific nanoparticles incorporating oligonucleotides into injured cerebrovascular endothelium. Biomaterials 2013;34:4128-36. [PMID: 23465828 DOI: 10.1016/j.biomaterials.2013.02.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
116 Chang J, Jallouli Y, Barras A, Dupont N, Betbeder D. Drug delivery to the brain using colloidal carriers. Nanoneuroscience and Nanoneuropharmacology. Elsevier; 2009. pp. 2-17. [DOI: 10.1016/s0079-6123(08)80001-5] [Cited by in Crossref: 7] [Article Influence: 0.5] [Reference Citation Analysis]
117 Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opinion on Drug Delivery 2008;5:155-74. [DOI: 10.1517/17425247.5.2.155] [Cited by in Crossref: 146] [Cited by in F6Publishing: 124] [Article Influence: 10.4] [Reference Citation Analysis]
118 Barbu E, Molnàr É, Tsibouklis J, Górecki DC. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier. Expert Opinion on Drug Delivery 2009;6:553-65. [DOI: 10.1517/17425240902939143] [Cited by in Crossref: 129] [Cited by in F6Publishing: 119] [Article Influence: 9.9] [Reference Citation Analysis]
119 Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, Borm P, Estrada G, Ntziachristos V, Razansky D. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010;7:3. [PMID: 20199661 DOI: 10.1186/1743-8977-7-3] [Cited by in Crossref: 270] [Cited by in F6Publishing: 232] [Article Influence: 22.5] [Reference Citation Analysis]
120 Li Y, Rissanen S, Stepniewski M, Cramariuc O, Róg T, Mirza S, Xhaard H, Wytrwal M, Kepczynski M, Bunker A. Study of Interaction Between PEG Carrier and Three Relevant Drug Molecules: Piroxicam, Paclitaxel, and Hematoporphyrin. J Phys Chem B 2012;116:7334-41. [DOI: 10.1021/jp300301z] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 4.1] [Reference Citation Analysis]
121 Eke G, Goñi-de-cerio F, Suarez-merino B, Hasirci N, Hasirci V. Biocompatibility of Dead Sea Water and retinyl palmitate carrying poly(3-hydroxybutyrate-co-3-hydroxyvalerate) micro/nanoparticles designed for transdermal skin therapy. Journal of Bioactive and Compatible Polymers 2015;30:455-71. [DOI: 10.1177/0883911515585183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
122 Ibrahim TM, El-Megrab NA, El-Nahas HM. An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization. Pharm Dev Technol 2021;26:709-28. [PMID: 34176433 DOI: 10.1080/10837450.2021.1944207] [Reference Citation Analysis]
123 Ruan S, Zhou Y, Jiang X, Gao H. Rethinking CRITID Procedure of Brain Targeting Drug Delivery: Circulation, Blood Brain Barrier Recognition, Intracellular Transport, Diseased Cell Targeting, Internalization, and Drug Release. Adv Sci (Weinh) 2021;8:2004025. [PMID: 33977060 DOI: 10.1002/advs.202004025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
124 Ren W, Chang J, Yan C, Qian X, Long L, He B, Yuan X, Kang C, Betbeder D, Sheng J, Pu P. Development of transferrin functionalized poly(ethylene glycol)/poly(lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain glioma. J Mater Sci: Mater Med 2010;21:2673-81. [DOI: 10.1007/s10856-010-4106-5] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 2.8] [Reference Citation Analysis]
125 Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Materials Today 2005;8:18-26. [DOI: 10.1016/s1369-7021(05)71033-6] [Cited by in Crossref: 103] [Article Influence: 6.1] [Reference Citation Analysis]
126 São Pedro A, Fernandes R, Flora Villarreal C, Fialho R, Cabral Albuquerque E. Opioid-based micro and nanoparticulate formulations: alternative approach on pain management. Journal of Microencapsulation 2015;33:18-29. [DOI: 10.3109/02652048.2015.1134687] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
127 Mohammad Jafari R, Ala M, Goodarzi N, Dehpour AR. Does Pharmacodynamics of Drugs Change After Presenting them as Nanoparticles Like their Pharmacokinetics? CDT 2020;21:807-18. [DOI: 10.2174/1389450121666200128113547] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
128 Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D. Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomedicine 2014;9:795-811. [PMID: 24550672 DOI: 10.2147/IJN.S52236] [Cited by in Crossref: 31] [Cited by in F6Publishing: 55] [Article Influence: 3.9] [Reference Citation Analysis]
129 Varenne F, Hillaireau H, Bataille J, Smadja C, Barratt G, Vauthier C. Application of validated protocols to characterize size and zeta potential of dispersed materials using light scattering methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;560:418-25. [DOI: 10.1016/j.colsurfa.2018.09.006] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
130 Pendleton ED, Sullivan CJ, Sasmor HH, Bruse KD, Mayfield TB, Valente DL, Abrams RE, Griffey RH, Dresios J. Actin exposure upon tissue injury is a targetable wound site-specific protein marker. Biochem Biophys Rep 2016;7:56-62. [PMID: 28955889 DOI: 10.1016/j.bbrep.2016.05.013] [Reference Citation Analysis]
131 Panda A, Meena J, Katara R, Majumdar DK. Formulation and characterization of clozapine and risperidone co-entrapped spray-dried PLGA nanoparticles. Pharm Dev Technol 2016;21:43-53. [PMID: 25403112 DOI: 10.3109/10837450.2014.965324] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
132 Mallapragada SK, Brenza TM, McMillan JM, Narasimhan B, Sakaguchi DS, Sharma AD, Zbarska S, Gendelman HE. Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. Nanomedicine 2015;11:715-29. [PMID: 25652894 DOI: 10.1016/j.nano.2014.12.013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
133 Perera UMSP, Rajapakse N. Chitosan Nanoparticles: Preparation, Characterization, and Applications. In: Kim S, editor. Seafood Processing By-Products. New York: Springer; 2014. pp. 371-87. [DOI: 10.1007/978-1-4614-9590-1_18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
134 Gupta S, Kumar P. Drug Delivery Using Nanocarriers: Indian Perspective. Proc Natl Acad Sci , India, Sect B Biol Sci 2012;82:167-206. [DOI: 10.1007/s40011-012-0080-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
135 Dai Q, Bertleff‐zieschang N, Braunger JA, Björnmalm M, Cortez‐jugo C, Caruso F. Particle Targeting in Complex Biological Media. Adv Healthcare Mater 2018;7:1700575. [DOI: 10.1002/adhm.201700575] [Cited by in Crossref: 53] [Cited by in F6Publishing: 39] [Article Influence: 10.6] [Reference Citation Analysis]
136 Ranjita S. Nanosuspensions: a new approach for organ and cellular targeting in infectious diseases. Journal of Pharmaceutical Investigation 2013;43:1-26. [DOI: 10.1007/s40005-013-0051-x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
137 Loureiro JA, Pereira MC. PLGA Based Drug Carrier and Pharmaceutical Applications: The Most Recent Advances. Pharmaceutics 2020;12:E903. [PMID: 32971970 DOI: 10.3390/pharmaceutics12090903] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
138 Arvanitis CD, Mcdannold N. Drug Delivery to the Brain via Focused Ultrasound. Image-Guided Neurosurgery. Elsevier; 2015. pp. 441-74. [DOI: 10.1016/b978-0-12-800870-6.00018-2] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
139 Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. Journal of Controlled Release 2008;127:97-109. [DOI: 10.1016/j.jconrel.2007.12.018] [Cited by in Crossref: 341] [Cited by in F6Publishing: 319] [Article Influence: 24.4] [Reference Citation Analysis]
140 Lauzon M, Daviau A, Marcos B, Faucheux N. Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. Journal of Controlled Release 2015;206:187-205. [DOI: 10.1016/j.jconrel.2015.03.024] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
141 Li Y, Zhu C, Kan J. Preparation and Characteristics of γ-Fe2O3/Polyaniline-Curcumin Composites. Metals 2015;5:2401-12. [DOI: 10.3390/met5042401] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
142 Nazarov GV, Galan SE, Nazarova EV, Karkishchenko NN, Muradov MM, Stepanov VA. Nanosized forms of drugs (A Review). Pharm Chem J 2009;43:163-70. [DOI: 10.1007/s11094-009-0259-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
143 Singh R, Singh S, Lillard JW Jr. Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci 2008;97:2497-523. [PMID: 17918721 DOI: 10.1002/jps.21183] [Cited by in Crossref: 104] [Cited by in F6Publishing: 92] [Article Influence: 7.4] [Reference Citation Analysis]
144 Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci 2008;97:3518-90. [PMID: 18200527 DOI: 10.1002/jps.21270] [Cited by in Crossref: 222] [Cited by in F6Publishing: 192] [Article Influence: 15.9] [Reference Citation Analysis]
145 Heinz H, Pramanik C, Heinz O, Ding Y, Mishra RK, Marchon D, Flatt RJ, Estrela-lopis I, Llop J, Moya S, Ziolo RF. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surface Science Reports 2017;72:1-58. [DOI: 10.1016/j.surfrep.2017.02.001] [Cited by in Crossref: 251] [Cited by in F6Publishing: 111] [Article Influence: 50.2] [Reference Citation Analysis]
146 Yasaswi PS, Shetty K, Yadav KS. Temozolomide nano enabled medicine: promises made by the nanocarriers in glioblastoma therapy. J Control Release 2021;336:549-71. [PMID: 34229001 DOI: 10.1016/j.jconrel.2021.07.003] [Reference Citation Analysis]
147 Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 2013;441:202-12. [PMID: 23220081 DOI: 10.1016/j.ijpharm.2012.11.042] [Cited by in Crossref: 92] [Cited by in F6Publishing: 82] [Article Influence: 9.2] [Reference Citation Analysis]
148 Rani S, Sharma AK, Khan I, Gothwal A, Chaudhary S, Gupta U. Polymeric Nanoparticles in Targeting and Delivery of Drugs. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. Elsevier; 2017. pp. 223-55. [DOI: 10.1016/b978-0-12-809717-5.00008-7] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
149 Béduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007;28:4947-67. [PMID: 17716726 DOI: 10.1016/j.biomaterials.2007.06.011] [Cited by in Crossref: 283] [Cited by in F6Publishing: 252] [Article Influence: 18.9] [Reference Citation Analysis]
150 Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P; European NanoBioPharmaceutics Research Initiative. Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol. 2009;87:212-251. [PMID: 19395337 DOI: 10.1016/j.pneurobio.2008.12.002] [Cited by in Crossref: 185] [Cited by in F6Publishing: 162] [Article Influence: 14.2] [Reference Citation Analysis]
151 Santos GCM, Tiago M, Maria-engler SS, Pinto TDJA. Three-Dimensional Systems in Polybutylcyanoacrylate Nanoparticles Safety Evaluation. International Journal of Polymeric Materials and Polymeric Biomaterials 2015;64:695-707. [DOI: 10.1080/00914037.2014.1002097] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
152 Yeini E, Ofek P, Albeck N, Rodriguez Ajamil D, Neufeld L, Eldar‐boock A, Kleiner R, Vaskovich D, Koshrovski‐michael S, Dangoor SI, Krivitsky A, Burgos Luna C, Shenbach‐koltin G, Goldenfeld M, Hadad O, Tiram G, Satchi‐fainaro R. Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. Adv Therap 2021;4:2000124. [DOI: 10.1002/adtp.202000124] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
153 Chen L, Yokel RA, Hennig B, Toborek M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol 2008;3:286-95. [PMID: 18830698 DOI: 10.1007/s11481-008-9131-5] [Cited by in Crossref: 161] [Cited by in F6Publishing: 130] [Article Influence: 11.5] [Reference Citation Analysis]
154 Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Advances in Colloid and Interface Science 2014;209:8-39. [DOI: 10.1016/j.cis.2013.12.008] [Cited by in Crossref: 282] [Cited by in F6Publishing: 180] [Article Influence: 35.3] [Reference Citation Analysis]
155 Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007;24:1759-71. [PMID: 17619996 DOI: 10.1007/s11095-007-9379-0] [Cited by in Crossref: 315] [Cited by in F6Publishing: 280] [Article Influence: 21.0] [Reference Citation Analysis]
156 Kura AU, Hussein MZ, Fakurazi S, Arulselvan P. Layered double hydroxide nanocomposite for drug delivery systems; bio-distribution, toxicity and drug activity enhancement. Chem Cent J 2014;8:47. [PMID: 25177361 DOI: 10.1186/s13065-014-0047-2] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 5.3] [Reference Citation Analysis]
157 Meng H, Leong W, Leong KW, Chen C, Zhao Y. Walking the line: The fate of nanomaterials at biological barriers. Biomaterials 2018;174:41-53. [PMID: 29778981 DOI: 10.1016/j.biomaterials.2018.04.056] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 17.0] [Reference Citation Analysis]
158 Suke SG, Sherekar P, Kahale V, Patil S, Mundhada D, Nanoti VM. Ameliorative effect of nanoencapsulated flavonoid against chlorpyrifos-induced hepatic oxidative damage and immunotoxicity in Wistar rats. J Biochem Mol Toxicol 2018;32:e22050. [DOI: 10.1002/jbt.22050] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
159 Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia K, Tekade RK. 'Dendrimer-Cationized-Albumin' encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int J Pharm 2019;555:77-99. [PMID: 30448308 DOI: 10.1016/j.ijpharm.2018.11.035] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
160 Ben Zirar S, Astier A, Muchow M, Gibaud S. Comparison of nanosuspensions and hydroxypropyl-β-cyclodextrin complex of melarsoprol: Pharmacokinetics and tissue distribution in mice. European Journal of Pharmaceutics and Biopharmaceutics 2008;70:649-56. [DOI: 10.1016/j.ejpb.2008.05.012] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 2.4] [Reference Citation Analysis]
161 Brewer E, Lowman AM. Assessing the transport of receptor-mediated drug-delivery devices across cellular monolayers. J Biomater Sci Polym Ed 2014;25:455-73. [PMID: 24365379 DOI: 10.1080/09205063.2013.870026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
162 Au C, Mutkus L, Dobson A, Riffle J, Lalli J, Aschner M. Effects of nanoparticles on the adhesion and cell viability on astrocytes. Biol Trace Elem Res 2007;120:248-56. [PMID: 17916977 DOI: 10.1007/s12011-007-0067-z] [Cited by in Crossref: 63] [Cited by in F6Publishing: 56] [Article Influence: 4.2] [Reference Citation Analysis]
163 Woods S, O'Brien LM, Butcher W, Preston JE, Georgian AR, Williamson ED, Salguero FJ, Modino F, Abbott NJ, Roberts CW, D'Elia RV. Glucosamine-NISV delivers antibody across the blood-brain barrier: Optimization for treatment of encephalitic viruses. J Control Release 2020;324:644-56. [PMID: 32512014 DOI: 10.1016/j.jconrel.2020.05.048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
164 Varenne F, Makky A, Gaucher-Delmas M, Violleau F, Vauthier C. Multimodal Dispersion of Nanoparticles: A Comprehensive Evaluation of Size Distribution with 9 Size Measurement Methods. Pharm Res 2016;33:1220-34. [PMID: 26864858 DOI: 10.1007/s11095-016-1867-7] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 9.3] [Reference Citation Analysis]
165 Claudio P, Reatul K, Brigitte E, Geraldine P. Drug-delivery nanocarriers to cross the blood–brain barrier. Nanobiomaterials in Drug Delivery. Elsevier; 2016. pp. 333-70. [DOI: 10.1016/b978-0-323-42866-8.00010-1] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
166 Aryal M, Arvanitis CD, Alexander PM, McDannold N. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev 2014;72:94-109. [PMID: 24462453 DOI: 10.1016/j.addr.2014.01.008] [Cited by in Crossref: 215] [Cited by in F6Publishing: 188] [Article Influence: 26.9] [Reference Citation Analysis]
167 Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009;9:325-41. [PMID: 19435455 DOI: 10.1586/erm.09.15] [Cited by in Crossref: 496] [Cited by in F6Publishing: 451] [Article Influence: 38.2] [Reference Citation Analysis]
168 Zhang L, Fan J, Li G, Yin Z, Fu BM. Transcellular Model for Neutral and Charged Nanoparticles Across an In Vitro Blood-Brain Barrier. Cardiovasc Eng Technol 2020;11:607-20. [PMID: 33113565 DOI: 10.1007/s13239-020-00496-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
169 Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016;1858:2334-52. [DOI: 10.1016/j.bbamem.2016.02.025] [Cited by in Crossref: 100] [Cited by in F6Publishing: 83] [Article Influence: 16.7] [Reference Citation Analysis]
170 Radad K, Al-Shraim M, Moldzio R, Rausch WD. Recent advances in benefits and hazards of engineered nanoparticles. Environ Toxicol Pharmacol 2012;34:661-72. [PMID: 22964156 DOI: 10.1016/j.etap.2012.07.011] [Cited by in Crossref: 50] [Cited by in F6Publishing: 32] [Article Influence: 5.0] [Reference Citation Analysis]
171 Sharma HS. Nanoneuroscience: emerging concepts on nanoneurotoxicity and nanoneuroprotection. Nanomedicine (Lond) 2007;2:753-8. [PMID: 18095842 DOI: 10.2217/17435889.2.6.753] [Cited by in Crossref: 57] [Cited by in F6Publishing: 41] [Article Influence: 4.1] [Reference Citation Analysis]
172 Aguilar ZP. Targeted Drug Delivery. Nanomaterials for Medical Applications. Elsevier; 2013. pp. 181-234. [DOI: 10.1016/b978-0-12-385089-8.00005-4] [Cited by in Crossref: 13] [Article Influence: 1.4] [Reference Citation Analysis]
173 Tseng YY, Chen TY, Liu SJ. Role of Polymeric Local Drug Delivery in Multimodal Treatment of Malignant Glioma: A Review. Int J Nanomedicine 2021;16:4597-614. [PMID: 34267515 DOI: 10.2147/IJN.S309937] [Reference Citation Analysis]
174 Dhas NL, Raval NJ, Kudarha RR, Acharya NS, Acharya SR. Core–shell nanoparticles as a drug delivery platform for tumor targeting. Inorganic Frameworks as Smart Nanomedicines. Elsevier; 2018. pp. 387-448. [DOI: 10.1016/b978-0-12-813661-4.00009-2] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
175 Devalapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical product development. J Pharm Sci 2007;96:2547-65. [PMID: 17688284 DOI: 10.1002/jps.20875] [Cited by in Crossref: 133] [Cited by in F6Publishing: 108] [Article Influence: 8.9] [Reference Citation Analysis]
176 Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 2007;96:203-9. [PMID: 17191251 DOI: 10.1002/bit.21301] [Cited by in Crossref: 294] [Cited by in F6Publishing: 245] [Article Influence: 19.6] [Reference Citation Analysis]
177 Shushkov PG, Tzvetanov SA, Ivanova AN, Tadjer AV. Dielectric Properties Tangential to the Interface in Model Insoluble Monolayers:  Theoretical Assessment. Langmuir 2008;24:4615-24. [DOI: 10.1021/la703616c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
178 Wu Y, Song X, Kebebe D, Li X, Xue Z, Li J, Du S, Pi J, Liu Z. Brain targeting of Baicalin and Salvianolic acid B combination by OX26 functionalized nanostructured lipid carriers. Int J Pharm 2019;571:118754. [PMID: 31604118 DOI: 10.1016/j.ijpharm.2019.118754] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
179 Yang Z, Luo X, Zhang X, Liu J, Jiang Q. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles. Biomed Mater 2013;8:025012. [PMID: 23507576 DOI: 10.1088/1748-6041/8/2/025012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 4.7] [Reference Citation Analysis]
180 Chawla R, Solanki HS, Kheruka SC, Gambhir S, Dube V, Aggarwal LM, Mishra B. Polylactide-co-glycolide nanoparticles of antitubercular drugs: formulation, characterization and biodistribution studies. Ther Deliv 2014;5:1247-59. [PMID: 25531927 DOI: 10.4155/tde.14.88] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
181 Lao F, Chen L, Li W, Ge C, Qu Y, Sun Q, Zhao Y, Han D, Chen C. Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS Nano 2009;3:3358-68. [PMID: 19839607 DOI: 10.1021/nn900912n] [Cited by in Crossref: 90] [Cited by in F6Publishing: 87] [Article Influence: 7.5] [Reference Citation Analysis]
182 Zhang X, Liu L, Zhang X, Ma K, Rao Y, Zhao Q, Li F. Analytical methods for brain targeted delivery system in vivo: perspectives on imaging modalities and microdialysis. J Pharm Biomed Anal 2012;59:1-12. [PMID: 22088476 DOI: 10.1016/j.jpba.2011.08.042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
183 Kuzma J, Romanchek J, Kokotovich A. Upstream oversight assessment for agrifood nanotechnology: a case studies approach. Risk Anal 2008;28:1081-98. [PMID: 18627547 DOI: 10.1111/j.1539-6924.2008.01071.x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.4] [Reference Citation Analysis]
184 Joshi AS, Gahane A, Thakur AK. Deciphering the mechanism and structural features of polysorbate 80 during adsorption on PLGA nanoparticles by attenuated total reflectance – Fourier transform infrared spectroscopy. RSC Adv 2016;6:108545-57. [DOI: 10.1039/c6ra07699h] [Cited by in Crossref: 10] [Article Influence: 1.7] [Reference Citation Analysis]
185 Tseng YY, Wang YC, Su CH, Liu SJ. Biodegradable vancomycin-eluting poly[(d,l)-lactide-co-glycolide] nanofibres for the treatment of postoperative central nervous system infection. Sci Rep 2015;5:7849. [PMID: 25597553 DOI: 10.1038/srep07849] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
186 Bie CQ, Han LM, Wang QZ, Fan HM, Zhu HF, Liang XJ, Yang DH. Preparation of hepatocellular carcinoma-targeted immunonanoparticles and investigation of their effects on the proliferation of hepatocellular carcinoma cells. Shijie Huaren Xiaohua Zazhi 2010; 18(13): 1326-1330 [DOI: 10.11569/wcjd.v18.i13.1326] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
187 Sardoiwala MN, Kaundal B, Roy Choudhury S. Development of Engineered Nanoparticles Expediting Diagnostic and Therapeutic Applications Across Blood–Brain Barrier. Handbook of Nanomaterials for Industrial Applications. Elsevier; 2018. pp. 696-709. [DOI: 10.1016/b978-0-12-813351-4.00038-9] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
188 Chen Y, Hung Y, Lin L, Liau I, Hong M, Huang GS. Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles. Nanotechnology 2010;21:485102. [DOI: 10.1088/0957-4484/21/48/485102] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 2.8] [Reference Citation Analysis]
189 Dan N. Core–shell drug carriers: liposomes, polymersomes, and niosomes. Nanostructures for Drug Delivery. Elsevier; 2017. pp. 63-105. [DOI: 10.1016/b978-0-323-46143-6.00002-6] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
190 Wang D, Wu L. Nanomaterials for delivery of nucleic acid to the central nervous system (CNS). Materials Science and Engineering: C 2017;70:1039-46. [DOI: 10.1016/j.msec.2016.04.011] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
191 Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 2019;111:666-75. [PMID: 30611991 DOI: 10.1016/j.biopha.2018.12.133] [Cited by in Crossref: 80] [Cited by in F6Publishing: 61] [Article Influence: 26.7] [Reference Citation Analysis]
192 Gleber G, Cibik L, Haas S, Hoell A, Müller P, Krumrey M. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS). J Phys : Conf Ser 2010;247:012027. [DOI: 10.1088/1742-6596/247/1/012027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
193 Lopez T, Ortiz E, Alexander-katz R, Basaldella E, Bokhimi X. Cortisol controlled release by mesoporous silica. Nanomedicine: Nanotechnology, Biology and Medicine 2009;5:170-7. [DOI: 10.1016/j.nano.2008.08.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
194 Majumdar S, Wadajkar AS, Aljohani H, Reynolds MA, Kim AJ, Chellaiah M. Engineering of L-Plastin Peptide-Loaded Biodegradable Nanoparticles for Sustained Delivery and Suppression of Osteoclast Function In Vitro. Int J Cell Biol 2019;2019:6943986. [PMID: 31191656 DOI: 10.1155/2019/6943986] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
195 Stepniewski M, Pasenkiewicz-gierula M, Róg T, Danne R, Orlowski A, Karttunen M, Urtti A, Yliperttula M, Vuorimaa E, Bunker A. Study of PEGylated Lipid Layers as a Model for PEGylated Liposome Surfaces: Molecular Dynamics Simulation and Langmuir Monolayer Studies. Langmuir 2011;27:7788-98. [DOI: 10.1021/la200003n] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 7.3] [Reference Citation Analysis]
196 Chakraborty C, Sarkar B, Hsu CH, Wen ZH, Lin CS, Shieh PC. Future prospects of nanoparticles on brain targeted drug delivery. J Neurooncol 2009;93:285-6. [PMID: 19048187 DOI: 10.1007/s11060-008-9759-2] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
197 Sezgin-bayindir Z, Ergin AD, Parmaksiz M, Elcin AE, Elcin YM, Yuksel N. Evaluation of various block copolymers for micelle formation and brain drug delivery: In vitro characterization and cellular uptake studies. Journal of Drug Delivery Science and Technology 2016;36:120-9. [DOI: 10.1016/j.jddst.2016.10.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
198 Hu YL, Gao JQ. Potential neurotoxicity of nanoparticles. Int J Pharm 2010;394:115-21. [PMID: 20433914 DOI: 10.1016/j.ijpharm.2010.04.026] [Cited by in Crossref: 136] [Cited by in F6Publishing: 117] [Article Influence: 11.3] [Reference Citation Analysis]
199 Ahirrao M, Shrotriya S. In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Dev Ind Pharm 2017;43:1686-93. [PMID: 28574732 DOI: 10.1080/03639045.2017.1338721] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
200 Lin G, Li L, Panwar N, Wang J, Tjin SC, Wang X, Yong K. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coordination Chemistry Reviews 2018;374:133-52. [DOI: 10.1016/j.ccr.2018.07.001] [Cited by in Crossref: 42] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
201 Gu X, Song Q, Zhang Q, Huang M, Zheng M, Chen J, Wei D, Chen J, Wei X, Chen H, Zheng G, Gao X. Clearance of two organic nanoparticles from the brain via the paravascular pathway. J Control Release 2020;322:31-41. [PMID: 32165238 DOI: 10.1016/j.jconrel.2020.03.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
202 El-Fawal HA. Neuroantibody biomarkers: links and challenges in environmental neurodegeneration and autoimmunity. Autoimmune Dis. 2014;2014:340875. [PMID: 25045531 DOI: 10.1155/2014/340875] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
203 Smith MW, Gumbleton M. Endocytosis at the blood–brain barrier: From basic understanding to drug delivery strategies. Journal of Drug Targeting 2008;14:191-214. [DOI: 10.1080/10611860600650086] [Cited by in Crossref: 108] [Cited by in F6Publishing: 106] [Article Influence: 7.7] [Reference Citation Analysis]
204 Ajana I, Astier A, Gibaud S. Arsthinol nanosuspensions: pharmacokinetics and anti-leukaemic activity on NB4 promyelocytic leukaemia cells. Journal of Pharmacy and Pharmacology 2009;61:1295-301. [DOI: 10.1211/jpp.61.10.0004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
205 Sharma HS, Sahib S, Tian ZR, Muresanu DF, Nozari A, Castellani RJ, Lafuente JV, Wiklund L, Sharma A. Protein kinase inhibitors in traumatic brain injury and repair: New roles of nanomedicine. Prog Brain Res 2020;258:233-83. [PMID: 33223036 DOI: 10.1016/bs.pbr.2020.09.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
206 Shivinsky A, Bronshtein T, Haber T, Machluf M. The effect of AZD2171- or sTRAIL/Apo2L-loaded polylactic-co-glycolic acid microspheres on a subcutaneous glioblastoma model. Biomed Microdevices 2015;17. [DOI: 10.1007/s10544-015-9969-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
207 Küçüktürkmen B, Öz UC, Bozkir A. In Situ Hydrogel Formulation for Intra-Articular Application of Diclofenac Sodium-Loaded Polymeric Nanoparticles. Turk J Pharm Sci 2017;14:56-64. [PMID: 32454595 DOI: 10.4274/tjps.84803] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
208 Lebouille JG, Leermakers FA, Cohen Stuart MA, Tuinier R. Design of block-copolymer-based micelles for active and passive targeting. Phys Rev E 2016;94:042503. [PMID: 27841591 DOI: 10.1103/PhysRevE.94.042503] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
209 Chung CY, Yang JT, Kuo YC. Polybutylcyanoacrylate nanoparticles for delivering hormone response element-conjugated neurotrophin-3 to the brain of intracerebral hemorrhagic rats. Biomaterials 2013;34:9717-27. [PMID: 24034503 DOI: 10.1016/j.biomaterials.2013.08.083] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
210 Al-Doaiss AA, Jarrar Q, Alshehri M, Jarrar B. In vivo study of silver nanomaterials' toxicity with respect to size. Toxicol Ind Health 2020;36:540-57. [PMID: 32677580 DOI: 10.1177/0748233720937201] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
211 Xie YT, Du YZ, Yuan H, Hu FQ. Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system. Int J Nanomedicine 2012;7:3235-44. [PMID: 22802685 DOI: 10.2147/IJN.S32701] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 0.7] [Reference Citation Analysis]
212 Grabrucker AM, Chhabra R, Belletti D, Forni F, Vandelli MA, Ruozi B, Tosi G. Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems. In: Fricker G, Ott M, Mahringer A, editors. The Blood Brain Barrier (BBB). Berlin: Springer Berlin Heidelberg; 2014. pp. 71-89. [DOI: 10.1007/7355_2013_22] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
213 Lopez T, Ortiz E, Alexander-katz R, Odriozola JA, Quintana P, Gonzalez RD, Lottici PP, Marino IG. The effect of water on particle size, porosity and the rate of drug release from implanted titania reservoirs. J Biomed Mater Res 2010;93B:401-6. [DOI: 10.1002/jbm.b.31595] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
214 Bennewitz MF, Saltzman WM. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics 2009;6:323-36. [PMID: 19332327 DOI: 10.1016/j.nurt.2009.01.018] [Cited by in Crossref: 71] [Cited by in F6Publishing: 61] [Article Influence: 5.5] [Reference Citation Analysis]
215 Goyal K, Konar A, Kumar BSH, Koul V. Lactoferrin-conjugated pH and redox-sensitive polymersomes based on PEG-S-S-PLA-PCL-OH boost delivery of bacosides to the brain. Nanoscale 2018;10:17781-98. [DOI: 10.1039/c8nr03828g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
216 Shakeri S, Ashrafizadeh M, Zarrabi A, Roghanian R, Afshar EG, Pardakhty A, Mohammadinejad R, Kumar A, Thakur VK. Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines 2020;8:E13. [PMID: 31941057 DOI: 10.3390/biomedicines8010013] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 13.5] [Reference Citation Analysis]
217 Bunker A. Poly(Ethylene Glycol) in Drug Delivery, Why Does it Work, and Can We do Better? All Atom Molecular Dynamics Simulation Provides Some Answers. Physics Procedia 2012;34:24-33. [DOI: 10.1016/j.phpro.2012.05.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
218 Gaoe H, Pang Z, Pan S, Cao S, Yang Z, Chen C, Jiang X. Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Arch Pharm Res 2012;35:333-41. [PMID: 22370788 DOI: 10.1007/s12272-012-0214-8] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
219 Rickert EL, Trebley JP, Peterson AC, Morrell MM, Weatherman RV. Synthesis and characterization of bioactive tamoxifen-conjugated polymers. Biomacromolecules 2007;8:3608-12. [PMID: 17929966 DOI: 10.1021/bm070413t] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
220 Escobar Ivirico JL, Beaumont M, García Cruz DM, Gómez-pinedo UA, Pradas MM. Cytotoxic effect of 4-hydroxytamoxifen conjugate material on human Schwann cells: Synthesis and characterization. Journal of Bioactive and Compatible Polymers 2013;28:574-89. [DOI: 10.1177/0883911513506664] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
221 Riabtseva A, Mitina N, Grytsyna I, Boiko N, Garamus VM, Stryhanyuk H, Stoika R, Zaichenko A. Functional micelles formed by branched polymeric surfactants: Synthesis, characteristics, and application as nanoreactors and carriers. European Polymer Journal 2016;75:406-22. [DOI: 10.1016/j.eurpolymj.2016.01.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
222 Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86:215-23. [PMID: 19186176 DOI: 10.1016/j.yexmp.2008.12.004] [Cited by in Crossref: 1474] [Cited by in F6Publishing: 1174] [Article Influence: 113.4] [Reference Citation Analysis]
223 Dominguez-Paredes D, Jahanshahi A, Kozielski KL. Translational considerations for the design of untethered nanomaterials in human neural stimulation. Brain Stimul 2021;14:1285-97. [PMID: 34375694 DOI: 10.1016/j.brs.2021.08.001] [Reference Citation Analysis]
224 Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55. [PMID: 22123084 DOI: 10.1186/1477-3155-9-55] [Cited by in Crossref: 350] [Cited by in F6Publishing: 299] [Article Influence: 31.8] [Reference Citation Analysis]
225 Raghunathan R, Mahesula S, Kancharla K, Janardhanan P, Jadhav YL, Nadeau R, Villa GP, Cook RL, Witt CM, Gelfond JA, Forsthuber TG, Haskins WE. Anti-CRLF2 Antibody-Armored Biodegradable Nanoparticles for Childhood B-ALL. Part Part Syst Charact 2013;30:355-64. [PMID: 23976822 DOI: 10.1002/ppsc.201200125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
226 Elbeltagy MAF, Elkholy WB, Salman AS. Effect of atherosclerosis and the protective effect of the antioxidant vitamin E on the rabbit cerebellum. Microscopy (Oxf) 2019;68:369-78. [PMID: 31305899 DOI: 10.1093/jmicro/dfz023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
227 Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des 2019;25:1312-34. [PMID: 31465282 DOI: 10.2174/1381612825666190425163424] [Cited by in Crossref: 50] [Cited by in F6Publishing: 35] [Article Influence: 25.0] [Reference Citation Analysis]
228 Ding J, Sun Y, Li J, Wang H, Mao S. Enhanced blood-brain barrier transport of vinpocetine by oral delivery of mixed micelles in combination with a message guider. J Drug Target 2017;25:532-40. [PMID: 28151022 DOI: 10.1080/1061186X.2017.1289541] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.2] [Reference Citation Analysis]
229 Lakkireddy HR, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))–poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint. Advanced Drug Delivery Reviews 2016;107:289-332. [DOI: 10.1016/j.addr.2016.08.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
230 Mrsny R. Active Targeting Strategies in Cancer with a Focus on Potential Nanotechnology Applications. In: Amiji M, editor. Nanotechnology for Cancer Therapy. CRC Press; 2006. pp. 19-42. [DOI: 10.1201/9781420006636.ch3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
231 El-Habashy SE, Nazief AM, Adkins CE, Wen MM, El-Kamel AH, Hamdan AM, Hanafy AS, Terrell TO, Mohammad AS, Lockman PR, Nounou MI. Novel treatment strategies for brain tumors and metastases. Pharm Pat Anal 2014;3:279-96. [PMID: 24998288 DOI: 10.4155/ppa.14.19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
232 Esposito E, Cortesi R, Drechsler M, Fan J, Fu BM, Calderan L, Mannucci S, Boschi F, Nastruzzi C. Nanoformulations for dimethyl fumarate: Physicochemical characterization and in vitro / in vivo behavior. European Journal of Pharmaceutics and Biopharmaceutics 2017;115:285-96. [DOI: 10.1016/j.ejpb.2017.04.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
233 Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G, Hu Q, Song Q, Yao L, Tu Y, Chen H, Jiang X, Chen J. B6 Peptide-Modified PEG-PLA Nanoparticles for Enhanced Brain Delivery of Neuroprotective Peptide. Bioconjugate Chem 2013;24:997-1007. [DOI: 10.1021/bc400055h] [Cited by in Crossref: 77] [Cited by in F6Publishing: 67] [Article Influence: 8.6] [Reference Citation Analysis]
234 Haider M, Hassan MA, Ahmed IS, Shamma R. Thermogelling Platform for Baicalin Delivery for Versatile Biomedical Applications. Mol Pharm 2018;15:3478-88. [PMID: 29953815 DOI: 10.1021/acs.molpharmaceut.8b00480] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
235 Kyle S, Saha S. Nanotechnology for the detection and therapy of stroke. Adv Healthc Mater 2014;3:1703-20. [PMID: 24692428 DOI: 10.1002/adhm.201400009] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
236 Centonze M, Berenschot EJW, Serrati S, Susarrey-arce A, Krol S. The Fast Track for Intestinal Tumor Cell Differentiation and In Vitro Intestinal Models by Inorganic Topographic Surfaces. Pharmaceutics 2022;14:218. [DOI: 10.3390/pharmaceutics14010218] [Reference Citation Analysis]
237 Hall AM, Hemmer R, Spaulding R, Wetzel HN, Curcio J, Sabel BA, Henrich-Noack P, Pixley S, Hopkins T, Boyce RL, Schultheis PJ, Haik KL. Cytotoxicity and apoptotic gene expression in an in vitro model of the blood-brain barrier following exposure to poly(butylcyanoacrylate) nanoparticles. J Drug Target 2016;24:635-44. [PMID: 26707984 DOI: 10.3109/1061186X.2015.1132222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
238 Simkó M, Mattsson MO. Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 2010;7:42. [PMID: 21176150 DOI: 10.1186/1743-8977-7-42] [Cited by in Crossref: 114] [Cited by in F6Publishing: 87] [Article Influence: 9.5] [Reference Citation Analysis]
239 Malhotra M, Toulouse A, Godinho BM, Mc Carthy DJ, Cryan JF, O'Driscoll CM. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. Mol Biosyst 2015;11:2635-57. [PMID: 26135606 DOI: 10.1039/c5mb00278h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
240 Ben-Shabat S, Kumar N, Domb AJ. PEG-PLA block copolymer as potential drug carrier: preparation and characterization. Macromol Biosci 2006;6:1019-25. [PMID: 17128420 DOI: 10.1002/mabi.200600165] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 2.8] [Reference Citation Analysis]
241 Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, Hajipour MJ, Kehoe PG, Mahmoudi M. Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Diseases with Compromise to the Blood Brain Barrier. Chem Rev 2013;113:1877-903. [DOI: 10.1021/cr200472g] [Cited by in Crossref: 127] [Cited by in F6Publishing: 116] [Article Influence: 12.7] [Reference Citation Analysis]
242 Mangas-Sanjuan V, González-Alvarez M, Gonzalez-Alvarez I, Bermejo M. Drug penetration across the blood-brain barrier: an overview. Ther Deliv 2010;1:535-62. [PMID: 22833966 DOI: 10.4155/tde.10.37] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
243 Visan AI, Popescu-Pelin G, Gherasim O, Mihailescu A, Socol M, Zgura I, Chiritoiu M, Elena Sima L, Antohe F, Ivan L, Vranceanu DM, M Cotruț C, Cristescu R, Socol G. Long-Term Evaluation of Dip-Coated PCL-Blend-PEG Coatings in Simulated Conditions. Polymers (Basel) 2020;12:E717. [PMID: 32213843 DOI: 10.3390/polym12030717] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
244 Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Adv Mater 2018;30:1801362. [DOI: 10.1002/adma.201801362] [Cited by in Crossref: 143] [Cited by in F6Publishing: 125] [Article Influence: 35.8] [Reference Citation Analysis]
245 Gemmi M, Serravalle E, Roberti di Sarsina P. A New Method Based on Electron Diffraction for Detecting Nanoparticles in Injectable Medicines. J Pharm Sci 2020;109:891-9. [PMID: 31348938 DOI: 10.1016/j.xphs.2019.07.008] [Reference Citation Analysis]
246 Rissanen S, Kumorek M, Martinez-seara H, Li Y, Jamróz D, Bunker A, Nowakowska M, Vattulainen I, Kepczynski M, Róg T. Effect of PEGylation on Drug Entry into Lipid Bilayer. J Phys Chem B 2014;118:144-51. [DOI: 10.1021/jp4105745] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
247 Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine (Lond) 2015;10:321-41. [PMID: 25600973 DOI: 10.2217/nnm.14.171] [Cited by in Crossref: 179] [Cited by in F6Publishing: 153] [Article Influence: 25.6] [Reference Citation Analysis]
248 Su Y, Sinko PJ. Drug delivery across the blood–brain barrier: why is it difficult? how to measure and improve it? Expert Opinion on Drug Delivery 2006;3:419-35. [DOI: 10.1517/17425247.3.3.419] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 2.3] [Reference Citation Analysis]
249 Prathipati P, Zhu J, Dong X. Development of novel HDL-mimicking α-tocopherol-coated nanoparticles to encapsulate nerve growth factor and evaluation of biodistribution. Eur J Pharm Biopharm 2016;108:126-35. [PMID: 27531623 DOI: 10.1016/j.ejpb.2016.08.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
250 Privalova AM, Gulyaeva NV, Bukreeva TV. Intranasal administration: a prospective drug delivery route to the brain. Neurochem J 2012;6:77-88. [DOI: 10.1134/s1819712412020080] [Cited by in Crossref: 10] [Article Influence: 1.0] [Reference Citation Analysis]
251 Bakr MM, Shukr MH, ElMeshad AN. In Situ Hexosomal Gel as a Promising Tool to Ameliorate the Transnasal Brain Delivery of Vinpocetine: Central Composite Optimization and In Vivo Biodistribution. J Pharm Sci 2020;109:2213-23. [PMID: 32259532 DOI: 10.1016/j.xphs.2020.03.030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
252 Woodle MC, Lu PY. Nanoparticles deliver RNAi therapy. Materials Today 2005;8:34-41. [DOI: 10.1016/s1369-7021(05)71035-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
253 Lu W, Wan J, Zhang Q, She Z, Jiang X. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer 2007;120:420-31. [PMID: 17066446 DOI: 10.1002/ijc.22296] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
254 Wong HL, Chattopadhyay N, Wu XY, Bendayan R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev 2010;62:503-17. [PMID: 19914319 DOI: 10.1016/j.addr.2009.11.020] [Cited by in Crossref: 134] [Cited by in F6Publishing: 120] [Article Influence: 10.3] [Reference Citation Analysis]