BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hussein YR, Bandyopadhyay S, Semaan A, Ahmed Q, Albashiti B, Jazaerly T, Nahleh Z, Ali-Fehmi R. Glut-1 Expression Correlates with Basal-like Breast Cancer. Transl Oncol 2011;4:321-7. [PMID: 22190995 DOI: 10.1593/tlo.11256] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
Number Citing Articles
1 Deng Y, Zou J, Deng T, Liu J. Clinicopathological and prognostic significance of GLUT1 in breast cancer: A meta-analysis. Medicine (Baltimore) 2018;97:e12961. [PMID: 30508885 DOI: 10.1097/MD.0000000000012961] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
2 Wu Q, Ba-Alawi W, Deblois G, Cruickshank J, Duan S, Lima-Fernandes E, Haight J, Tonekaboni SAM, Fortier AM, Kuasne H, McKee TD, Mahmoud H, Kushida M, Cameron S, Dogan-Artun N, Chen W, Nie Y, Zhang LX, Vellanki RN, Zhou S, Prinos P, Wouters BG, Dirks PB, Done SJ, Park M, Cescon DW, Haibe-Kains B, Lupien M, Arrowsmith CH. GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer. Nat Commun 2020;11:4205. [PMID: 32826891 DOI: 10.1038/s41467-020-18020-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
3 García Calavia P, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci 2018;512:249-59. [PMID: 29073466 DOI: 10.1016/j.jcis.2017.10.030] [Cited by in Crossref: 60] [Cited by in F6Publishing: 47] [Article Influence: 12.0] [Reference Citation Analysis]
4 Wahdan-Alaswad RS, Edgerton SM, Salem HS, Thor AD. Metformin Targets Glucose Metabolism in Triple Negative Breast Cancer. J Oncol Transl Res 2018;4:129. [PMID: 29780974 DOI: 10.4172/2476-2261.1000129] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
5 Banik B, Somyajit K, Nagaraju G, Chakravarty AR. Oxovanadium( iv ) catecholates of terpyridine bases for cellular imaging and photocytotoxicity in red light. RSC Adv 2014;4:40120-31. [DOI: 10.1039/c4ra02687j] [Cited by in Crossref: 9] [Article Influence: 1.1] [Reference Citation Analysis]
6 Martin SD, McGee SL. Metabolic reprogramming in type 2 diabetes and the development of breast cancer. J Endocrinol 2018;237:R35-46. [PMID: 29487204 DOI: 10.1530/JOE-18-0037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
7 Kim NH, Sung NJ, Youn HS, Park SA. Gremlin-1 activates Akt/STAT3 signaling, which increases the glycolysis rate in breast cancer cells. Biochem Biophys Res Commun 2020;533:1378-84. [PMID: 33097188 DOI: 10.1016/j.bbrc.2020.10.025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Shen N, Korm S, Karantanos T, Li D, Zhang X, Ritou E, Xu H, Lam A, English J, Zong WX, Liu CT, Shirihai O, Feng H. DLST-dependence dictates metabolic heterogeneity in TCA-cycle usage among triple-negative breast cancer. Commun Biol 2021;4:1289. [PMID: 34785772 DOI: 10.1038/s42003-021-02805-8] [Reference Citation Analysis]
9 Chen B, Tang H, Liu X, Liu P, Yang L, Xie X, Ye F, Song C, Xie X, Wei W. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett. 2015;356:410-417. [PMID: 25304371 DOI: 10.1016/j.canlet.2014.09.028] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 6.0] [Reference Citation Analysis]
10 Chen C, Xia J, Ren H, Wang A, Zhu Y, Zhang R, Gan Z, Wang J. Effect of the structure of ginsenosides on the in vivo fate of their liposomes. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2021.12.002] [Reference Citation Analysis]
11 Cappelletti V, Iorio E, Miodini P, Silvestri M, Dugo M, Daidone MG. Metabolic Footprints and Molecular Subtypes in Breast Cancer. Dis Markers 2017;2017:7687851. [PMID: 29434411 DOI: 10.1155/2017/7687851] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
12 Adams A, van Brussel AS, Vermeulen JF, Mali WP, van der Wall E, van Diest PJ, Elias SG. The potential of hypoxia markers as target for breast molecular imaging--a systematic review and meta-analysis of human marker expression. BMC Cancer 2013;13:538. [PMID: 24206539 DOI: 10.1186/1471-2407-13-538] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
13 Abdou AG, Eldien MM, Elsakka D. GLUT-1 Expression in Cutaneous Basal and Squamous Cell Carcinomas. Int J Surg Pathol 2015;23:447-53. [PMID: 26092229 DOI: 10.1177/1066896915589968] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
14 He J, Li CF, Lee HJ, Shin DH, Chern YJ, Pereira De Carvalho B, Chan CH. MIG-6 is essential for promoting glucose metabolic reprogramming and tumor growth in triple-negative breast cancer. EMBO Rep 2021;22:e50781. [PMID: 33655623 DOI: 10.15252/embr.202050781] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Oh S, Kim H, Nam K, Shin I. Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells. BMB Rep. 2017;50:132-137. [PMID: 27931517 DOI: 10.5483/BMBRep.2017.50.3.189] [Cited by in Crossref: 54] [Cited by in F6Publishing: 42] [Article Influence: 10.8] [Reference Citation Analysis]
16 Liu H, Sun H, Zhang B, Liu S, Deng S, Weng Z, Zuo B, Yang J, He Y. 18F-FDG PET imaging for monitoring the early anti-tumor effect of albendazole on triple-negative breast cancer. Breast Cancer 2020;27:372-80. [DOI: 10.1007/s12282-019-01027-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
17 Naik A, Decock J. Lactate Metabolism and Immune Modulation in Breast Cancer: A Focused Review on Triple Negative Breast Tumors. Front Oncol 2020;10:598626. [PMID: 33324565 DOI: 10.3389/fonc.2020.598626] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Hirose Y, Kaida H, Kawahara A, Matono S, Tanaka T, Kurata S, Kage M, Ishibashi M, Abe T. Molecular biological correlation of fluorine-18 fluorodeoxyglucose uptake in esophageal squamous cell carcinoma. Nucl Med Commun 2016;37:1053-61. [PMID: 27218430 DOI: 10.1097/MNM.0000000000000550] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
19 Oh S, Kim H, Nam K, Shin I. Silencing of Glut1 induces chemoresistance via modulation of Akt/GSK-3β/β-catenin/survivin signaling pathway in breast cancer cells. Archives of Biochemistry and Biophysics 2017;636:110-22. [DOI: 10.1016/j.abb.2017.08.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
20 Wojtowicz W, Wróbel A, Pyziak K, Tarkowski R, Balcerzak A, Bębenek M, Młynarz P. Evaluation of MDA-MB-468 Cell Culture Media Analysis in Predicting Triple-Negative Breast Cancer Patient Sera Metabolic Profiles. Metabolites 2020;10:E173. [PMID: 32349447 DOI: 10.3390/metabo10050173] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Jain S, Wang X, Chang CC, Ibarra-Drendall C, Wang H, Zhang Q, Brady SW, Li P, Zhao H, Dobbs J, Kyrish M, Tkaczyk TS, Ambrose A, Sistrunk C, Arun BK, Richards-Kortum R, Jia W, Seewaldt VL, Yu D. Src Inhibition Blocks c-Myc Translation and Glucose Metabolism to Prevent the Development of Breast Cancer. Cancer Res 2015;75:4863-75. [PMID: 26383165 DOI: 10.1158/0008-5472.CAN-14-2345] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
22 Ghergurovich JM, Lang JD, Levin MK, Briones N, Facista SJ, Mueller C, Cowan AJ, McBride MJ, Rodriguez ESR, Killian A, Dao T, Lamont J, Barron A, Su X, Hendricks WPD, Espina V, Von Hoff DD, O'Shaughnessy J, Rabinowitz JD. Local production of lactate, ribose phosphate, and amino acids within human triple-negative breast cancer. Med (N Y) 2021;2:736-54. [PMID: 34223403 DOI: 10.1016/j.medj.2021.03.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Calvaresi EC, Hergenrother PJ. Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci. 2013;4:2319-2333. [PMID: 24077675 DOI: 10.1039/c3sc22205e] [Cited by in Crossref: 211] [Cited by in F6Publishing: 184] [Article Influence: 23.4] [Reference Citation Analysis]
24 Shin E, Koo JS. Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol 2021;9:728759. [PMID: 34552932 DOI: 10.3389/fcell.2021.728759] [Reference Citation Analysis]
25 Basu U, Khan I, Hussain A, Gole B, Kondaiah P, Chakravarty AR. Carbohydrate-Appended Tumor Targeting Iron(III) Complexes Showing Photocytotoxicity in Red Light. Inorg Chem 2014;53:2152-62. [DOI: 10.1021/ic4028173] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 4.5] [Reference Citation Analysis]
26 Banik B, Somyajit K, Hussain A, Nagaraju G, Chakravarty AR. Carbohydrate-appended photocytotoxic (imidazophenanthroline)-oxovanadium( iv ) complexes for cellular targeting and imaging. Dalton Trans 2014;43:1321-31. [DOI: 10.1039/c3dt52087k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
27 Zhao ZX, Lu LW, Qiu J, Li QP, Xu F, Liu BJ, Dong JC, Gong WY. Glucose transporter-1 as an independent prognostic marker for cancer: a meta-analysis. Oncotarget 2018;9:2728-38. [PMID: 29416806 DOI: 10.18632/oncotarget.18964] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
28 Cripps J, Rudd A, Ebers GC. Birth order and multiple sclerosis. Acta Neurol Scand. 1982;66:342-346. [PMID: 7136496 DOI: 10.3389/fonc.2020.00428] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 0.7] [Reference Citation Analysis]
29 Abbondati E, Del-Pozo J, Hoather TM, Constantino-Casas F, Dobson JM. An immunohistochemical study of the expression of the hypoxia markers Glut-1 and Ca-IX in canine sarcomas. Vet Pathol 2013;50:1063-9. [PMID: 23628694 DOI: 10.1177/0300985813486810] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
30 Wu TN, Chen HM, Shyur LF. Current Advancements of Plant-Derived Agents for Triple-Negative Breast Cancer Therapy through Deregulating Cancer Cell Functions and Reprogramming Tumor Microenvironment. Int J Mol Sci 2021;22:13571. [PMID: 34948368 DOI: 10.3390/ijms222413571] [Reference Citation Analysis]
31 Samec M, Liskova A, Koklesova L, Zhai K, Varghese E, Samuel SM, Šudomová M, Lucansky V, Kassayova M, Pec M, Biringer K, Brockmueller A, Kajo K, Hassan STS, Shakibaei M, Golubnitschaja O, Büsselberg D, Kubatka P. Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects. Cancers (Basel) 2021;13:3018. [PMID: 34208645 DOI: 10.3390/cancers13123018] [Reference Citation Analysis]
32 Kim S, Kim do H, Jung WH, Koo JS. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer. Endocr Relat Cancer. 2013;20:339-348. [PMID: 23507704 DOI: 10.1530/erc-12-0398] [Cited by in Crossref: 70] [Cited by in F6Publishing: 44] [Article Influence: 7.8] [Reference Citation Analysis]
33 Motomura H, Ozaki A, Tamori S, Onaga C, Nozaki Y, Waki Y, Takasawa R, Yoshizawa K, Mano Y, Sato T, Sasaki K, Ishiguro H, Miyagi Y, Nagashima Y, Yamamoto K, Sato K, Hanawa T, Tanuma SI, Ohno S, Akimoto K. Glyoxalase 1 and protein kinase Cλ as potential therapeutic targets for late-stage breast cancer. Oncol Lett 2021;22:547. [PMID: 34093768 DOI: 10.3892/ol.2021.12808] [Reference Citation Analysis]
34 Iqbal MA, Chattopadhyay S, Siddiqui FA, Ur Rehman A, Siddiqui S, Prakasam G, Khan A, Sultana S, Bamezai RN. Silibinin induces metabolic crisis in triple-negative breast cancer cells by modulating EGFR-MYC-TXNIP axis: potential therapeutic implications. FEBS J 2021;288:471-85. [PMID: 32356386 DOI: 10.1111/febs.15353] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
35 Chen CH, Wang BW, Hsiao YC, Wu CY, Cheng FJ, Hsia TC, Chen CY, Wang Y, Weihua Z, Chou RH, Tang CH, Chen YJ, Wei YL, Hsu JL, Tu CY, Hung MC, Huang WC. PKCδ-mediated SGLT1 upregulation confers the acquired resistance of NSCLC to EGFR TKIs. Oncogene 2021;40:4796-808. [PMID: 34155348 DOI: 10.1038/s41388-021-01889-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Yin C, Gao B, Yang J, Wu J. Glucose Transporter-1 (GLUT-1) Expression is Associated with Tumor Size and Poor Prognosis in Locally Advanced Gastric Cancer. Med Sci Monit Basic Res 2020;26:e920778. [PMID: 32201432 DOI: 10.12659/MSMBR.920778] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
37 Li H, Fu L, Liu B, Lin X, Dong Q, Wang E. Ajuba overexpression regulates mitochondrial potential and glucose uptake through YAP/Bcl-xL/GLUT1 in human gastric cancer. Gene 2019;693:16-24. [DOI: 10.1016/j.gene.2019.01.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]