BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feng S. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Review of Medical Devices 2014;1:115-25. [DOI: 10.1586/17434440.1.1.115] [Cited by in Crossref: 144] [Cited by in F6Publishing: 124] [Article Influence: 18.0] [Reference Citation Analysis]
Number Citing Articles
1 Sankar R, Karthik S, Subramanian N, Krishnaswami V, Sonnemann J, Ravikumar V. Nanostructured delivery system for Suberoylanilide hydroxamic acid against lung cancer cells. Materials Science and Engineering: C 2015;51:362-8. [DOI: 10.1016/j.msec.2015.02.037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
2 Zhang L, Fu J, Xia Z, Wu P, Zhang X. Synthesis and characterization of a well-defined amphiphilic block copolymer and its paclitaxel prodrug from methoxy poly(ethylene glycol) and oligomer of glycolic acid. J Appl Polym Sci 2011;122:758-66. [DOI: 10.1002/app.33871] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
3 Ravi PR, Vats R, Balija J, Adapa SPN, Aditya N. Modified pullulan nanoparticles for oral delivery of lopinavir: Formulation and pharmacokinetic evaluation. Carbohydrate Polymers 2014;110:320-8. [DOI: 10.1016/j.carbpol.2014.03.099] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
4 Bagalkot V, Farokhzad OC, Langer R, Jon S. An Aptamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angew Chem 2006;118:8329-32. [DOI: 10.1002/ange.200602251] [Cited by in Crossref: 57] [Cited by in F6Publishing: 41] [Article Influence: 3.6] [Reference Citation Analysis]
5 Mi Y, Zhao J, Feng S. Prodrug micelle-based nanomedicine for cancer treatment. Nanomedicine 2013;8:1559-62. [DOI: 10.2217/nnm.13.121] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
6 Pandey SK, Haldar C, Patel DK, Maiti P. Biodegradable Polymers for Potential Delivery Systems for Therapeutics. In: Dutta P, Dutta J, editors. Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology. Berlin: Springer Berlin Heidelberg; 2013. pp. 169-202. [DOI: 10.1007/12_2012_198] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
7 Wang C, Sun X, Cheng L, Yin S, Yang G, Li Y, Liu Z. Multifunctional Theranostic Red Blood Cells For Magnetic-Field-Enhanced in vivo Combination Therapy of Cancer. Adv Mater 2014;26:4794-802. [DOI: 10.1002/adma.201400158] [Cited by in Crossref: 157] [Cited by in F6Publishing: 151] [Article Influence: 19.6] [Reference Citation Analysis]
8 Zhang Z, Lee SH, Gan CW, Feng S. In Vitro and In Vivo Investigation on PLA–TPGS Nanoparticles for Controlled and Sustained Small Molecule Chemotherapy. Pharm Res 2008;25:1925-35. [DOI: 10.1007/s11095-008-9611-6] [Cited by in Crossref: 85] [Cited by in F6Publishing: 80] [Article Influence: 6.1] [Reference Citation Analysis]
9 Azizi M, Farahmandghavi F, Joghataei M, Zandi M, Imani M, Bakhtiary M, Dorkoosh FA, Ghazizadeh F. Fabrication of protein-loaded PLGA nanoparticles: effect of selected formulation variables on particle size and release profile. J Polym Res 2013;20. [DOI: 10.1007/s10965-013-0110-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zhao L, Feng S. Enhanced Oral Bioavailability of Paclitaxel Formulated in Vitamin E-TPGS Emulsified Nanoparticles of Biodegradable Polymers: In Vitro and In Vivo Studies. Journal of Pharmaceutical Sciences 2010;99:3552-60. [DOI: 10.1002/jps.22113] [Cited by in Crossref: 76] [Cited by in F6Publishing: 68] [Article Influence: 6.3] [Reference Citation Analysis]
11 Sankar P, Telang AG, Kalaivanan R, Karunakaran V, Suresh S, Kesavan M. Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats. Toxicol Ind Health 2016;32:410-21. [DOI: 10.1177/0748233713498455] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
12 Ali M, Afzal M, Abdul Nasim S, Ahmad I. Nanocurcumin: a novel antifilarial agent with DNA topoisomerase II inhibitory activity. Journal of Drug Targeting 2014;22:395-407. [DOI: 10.3109/1061186x.2013.869823] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
13 Parveen S, Sahoo SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. European Journal of Pharmacology 2011;670:372-83. [DOI: 10.1016/j.ejphar.2011.09.023] [Cited by in Crossref: 165] [Cited by in F6Publishing: 148] [Article Influence: 15.0] [Reference Citation Analysis]
14 Riela S, Massaro M, Colletti CG, Bommarito A, Giordano C, Milioto S, Noto R, Poma P, Lazzara G. Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. International Journal of Pharmaceutics 2014;475:613-23. [DOI: 10.1016/j.ijpharm.2014.09.019] [Cited by in Crossref: 86] [Cited by in F6Publishing: 71] [Article Influence: 10.8] [Reference Citation Analysis]
15 Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res 2009;26:502-11. [PMID: 19002569 DOI: 10.1007/s11095-008-9765-2] [Cited by in Crossref: 98] [Cited by in F6Publishing: 92] [Article Influence: 7.0] [Reference Citation Analysis]
16 Perrier T, Fouchet F, Bastiat G, Saulnier P, Benoît J. OPA quantification of amino groups at the surface of Lipidic NanoCapsules (LNCs) for ligand coupling improvement. International Journal of Pharmaceutics 2011;419:266-70. [DOI: 10.1016/j.ijpharm.2011.07.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
17 Muthu MS, Feng SS. Pharmaceutical stability aspects of nanomedicines. Nanomedicine (Lond) 2009;4:857-60. [PMID: 19958220 DOI: 10.2217/nnm.09.75] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 3.8] [Reference Citation Analysis]
18 Bagalkot V, Farokhzad OC, Langer R, Jon S. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Engl 2006;45:8149-52. [PMID: 17099918 DOI: 10.1002/anie.200602251] [Cited by in Crossref: 422] [Cited by in F6Publishing: 402] [Article Influence: 28.1] [Reference Citation Analysis]
19 Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine 2011;6:877-95. [PMID: 21720501 DOI: 10.2147/IJN.S18905] [Cited by in Crossref: 241] [Cited by in F6Publishing: 72] [Article Influence: 21.9] [Reference Citation Analysis]
20 Zhang Z, Tan S, Feng S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012;33:4889-906. [DOI: 10.1016/j.biomaterials.2012.03.046] [Cited by in Crossref: 372] [Cited by in F6Publishing: 365] [Article Influence: 37.2] [Reference Citation Analysis]
21 Raveendran R, Bhuvaneshwar G, Sharma CP. Hemocompatible curcumin–dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells. Carbohydrate Polymers 2016;137:497-507. [DOI: 10.1016/j.carbpol.2015.11.017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 8.0] [Reference Citation Analysis]
22 Lin P. Nuclear Magnetic Resonance Spectroscopy in Nanomedicine. In: Misra P, editor. Applied Spectroscopy and the Science of Nanomaterials. Singapore: Springer; 2015. pp. 59-84. [DOI: 10.1007/978-981-287-242-5_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
23 Cruz J, Flórez J, Torres R, Urquiza M, Gutiérrez JA, Guzmán F, Ortiz CC. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa , Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA). Nanotechnology 2017;28:135102. [DOI: 10.1088/1361-6528/aa5f63] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
24 d'Angelo I, Conte C, Miro A, Quaglia F, Ungaro F. Core–shell nanocarriers for cancer therapy. Part I: biologically oriented design rules. Expert Opinion on Drug Delivery 2013;11:283-97. [DOI: 10.1517/17425247.2014.868881] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
25 Hao Y, Huang Y, He Y, Peng J, Chen L, Hu X, Qian Z. The evaluation of cellular uptake efficiency and tumor-targeting ability of MPEG–PDLLA micelles: effect of particle size. RSC Adv 2016;6:13698-709. [DOI: 10.1039/c5ra26563k] [Cited by in Crossref: 12] [Article Influence: 2.0] [Reference Citation Analysis]
26 Paul A, Das S, Das J, Samadder A, Khuda-bukhsh AR. Cytotoxicity and apoptotic signalling cascade induced by chelidonine-loaded PLGA nanoparticles in HepG2 cells in vitro and bioavailability of nano-chelidonine in mice in vivo. Toxicology Letters 2013;222:10-22. [DOI: 10.1016/j.toxlet.2013.07.006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
27 Abo‐zeid Y, Williams GR. The potential anti‐infective applications of metal oxide nanoparticles: A systematic review. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1592] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
28 Pan J, Feng S. Targeted delivery of paclitaxel using folate-decorated poly(lactide)–vitamin E TPGS nanoparticles. Biomaterials 2008;29:2663-72. [DOI: 10.1016/j.biomaterials.2008.02.020] [Cited by in Crossref: 143] [Cited by in F6Publishing: 134] [Article Influence: 10.2] [Reference Citation Analysis]
29 Dhapare SS, Dash AK. Effect of differential drying techniques on PLGA nanoparticles containing hydrophobic and hydrophilic anticancer agents. Therapeutic Delivery 2015;6:27-39. [DOI: 10.4155/tde.14.102] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
30 Liu Y, Feng S. Surfactant chain length effects on nanoparticles of biodegradable polymers for targeted drug delivery. AIChE J 2012;58:3289-97. [DOI: 10.1002/aic.13728] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
31 Lalani J, Patil S, Kolate A, Lalani R, Misra A. Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management. AAPS PharmSciTech 2015;16:413-27. [PMID: 25354788 DOI: 10.1208/s12249-014-0235-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
32 Liu Y, Mi Y, Zhao J, Feng SS. Multifunctional silica nanoparticles for targeted delivery of hydrophobic imaging and therapeutic agents. Int J Pharm 2011;421:370-8. [PMID: 22001536 DOI: 10.1016/j.ijpharm.2011.10.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
33 Yalcin S. Dextran-coated iron oxide nanoparticle for delivery of miR-29a to breast cancer cell line. Pharm Dev Technol 2019;24:1032-7. [PMID: 31159615 DOI: 10.1080/10837450.2019.1623252] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
34 Dang LH, Huynh NT, Pham NO, Nguyen CT, Vu MT, Dinh VT, Le VT, Tran NQ. Injectable nanocurcumin-dispersed gelatin–pluronic nanocomposite hydrogel platform for burn wound treatment. Bull Mater Sci 2019;42. [DOI: 10.1007/s12034-019-1745-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
35 Cao N, Feng SS. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation chemistry, characterization, in vitro and in vivo evaluation. Biomaterials 2008;29:3856-65. [PMID: 18606445 DOI: 10.1016/j.biomaterials.2008.05.016] [Cited by in Crossref: 140] [Cited by in F6Publishing: 136] [Article Influence: 10.0] [Reference Citation Analysis]
36 Mansoor S, Kondiah PPD, Choonara YE, Pillay V. Polymer-Based Nanoparticle Strategies for Insulin Delivery. Polymers (Basel) 2019;11:E1380. [PMID: 31443473 DOI: 10.3390/polym11091380] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
37 Wan D, Liu W, Wang L, Wang H, Pan J. Fluoridated hydroxyapatite: Eu 3+ nanorods-loaded folate-conjugated D- α -tocopheryl polyethylene glycol succinate (vitamin E TPGS) micelles for targeted imaging of cancer cells. Nanotechnology 2016;27:105703. [DOI: 10.1088/0957-4484/27/10/105703] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
38 Yu X, Pishko MV. Nanoparticle-based biocompatible and targeted drug delivery: characterization and in vitro studies. Biomacromolecules 2011;12:3205-12. [PMID: 21786828 DOI: 10.1021/bm200681m] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
39 Vásquez Marcano RGDJ, Tominaga TT, Khalil NM, Pedroso LS, Mainardes RM. Chitosan functionalized poly (ε-caprolactone) nanoparticles for amphotericin B delivery. Carbohydrate Polymers 2018;202:345-54. [DOI: 10.1016/j.carbpol.2018.08.142] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
40 Dong Y, Feng S. Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel. J Biomed Mater Res 2006;78A:12-9. [DOI: 10.1002/jbm.a.30684] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 2.9] [Reference Citation Analysis]
41 Majidinia M, Mirza-Aghazadeh-Attari M, Rahimi M, Mihanfar A, Karimian A, Safa A, Yousefi B. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB Life 2020;72:855-71. [PMID: 31913572 DOI: 10.1002/iub.2215] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 11.5] [Reference Citation Analysis]
42 Khatik R, Dwivedi P, Junnuthula VR, Sharma K, Chuttani K, Mishra AK, Dwivedi AK. Potential in vitro and in vivo colon specific anticancer activity in a HCT-116 xenograft nude mice model: targeted delivery using enteric coated folate modified nanoparticles. RSC Adv 2015;5:16507-20. [DOI: 10.1039/c4ra15114c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
43 Zou J, Yu Y, Yu L, Li Y, Chen C, Cheng C. Well-defined drug-conjugated biodegradable nanoparticles by azide-alkyne click crosslinking in miniemulsion. J Polym Sci A Polym Chem 2012;50:142-8. [DOI: 10.1002/pola.25016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
44 Sohail MF, Javed I, Hussain SZ, Sarwar S, Akhtar S, Nadhman A, Batool S, Irfan Bukhari N, Saleem RSZ, Hussain I, Shahnaz G. Folate grafted thiolated chitosan enveloped nanoliposomes with enhanced oral bioavailability and anticancer activity of docetaxel. J Mater Chem B 2016;4:6240-8. [DOI: 10.1039/c6tb01348a] [Cited by in Crossref: 44] [Cited by in F6Publishing: 4] [Article Influence: 7.3] [Reference Citation Analysis]
45 Feng M, Li P. Amine-containing core-shell nanoparticles as potential drug carriers for intracellular delivery. J Biomed Mater Res 2007;80A:184-93. [DOI: 10.1002/jbm.a.30882] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 2.3] [Reference Citation Analysis]
46 Zhang C, Li G, Wang Y, Cui F, Zhang J, Huang Q. Preparation and characterization of 5-fluorouracil-loaded PLLA–PEG/PEG nanoparticles by a novel supercritical CO2 technique. International Journal of Pharmaceutics 2012;436:272-81. [DOI: 10.1016/j.ijpharm.2012.06.022] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
47 Hamoudeh M, Salim H, Barbos D, Paunoiu C, Fessi H. Preparation and characterization of radioactive dirhenium decacarbonyl-loaded PLLA nanoparticles for radionuclide intra-tumoral therapy. European Journal of Pharmaceutics and Biopharmaceutics 2007;67:597-611. [DOI: 10.1016/j.ejpb.2007.04.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
48 Feng SS. New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now? Nanomedicine (Lond). 2006;1:297-309. [PMID: 17716160 DOI: 10.2217/17435889.1.3.297] [Cited by in Crossref: 797] [Cited by in F6Publishing: 525] [Article Influence: 53.1] [Reference Citation Analysis]
49 Chen X, Zhang Z, Yang S, Chen H, Wang D, Li J. All-trans retinoic acid-encapsulated, CD20 antibody-conjugated poly(lactic-co-glycolic acid) nanoparticles effectively target and eliminate melanoma-initiating cells in vitro. Onco Targets Ther 2018;11:6177-87. [PMID: 30288053 DOI: 10.2147/OTT.S169957] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Adahoun MA, Al-Akhras MH, Jaafar MS, Bououdina M. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artif Cells Nanomed Biotechnol 2017;45:98-107. [PMID: 26747522 DOI: 10.3109/21691401.2015.1129628] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
51 Liu J, Jiang Z, Zhang S, Saltzman WM. Poly(omega-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery. Biomaterials 2009;30:5707-19. [PMID: 19632718 DOI: 10.1016/j.biomaterials.2009.06.061] [Cited by in Crossref: 86] [Cited by in F6Publishing: 84] [Article Influence: 6.6] [Reference Citation Analysis]
52 Shekunov BY, Chattopadhyay P, Tong HH, Chow AH. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 2007;24:203-27. [PMID: 17191094 DOI: 10.1007/s11095-006-9146-7] [Cited by in Crossref: 272] [Cited by in F6Publishing: 191] [Article Influence: 17.0] [Reference Citation Analysis]
53 López-Gasco P, Iglesias I, Benedí J, Lozano R, Blanco MD. Characterization and in-vitro bioactivity evaluation of paclitaxel-loaded polyester nanoparticles. Anticancer Drugs 2012;23:947-58. [PMID: 22713593 DOI: 10.1097/CAD.0b013e328355a6c6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
54 Chiellini F, Piras AM, Errico C, Chiellini E. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine 2008;3:367-93. [DOI: 10.2217/17435889.3.3.367] [Cited by in Crossref: 76] [Cited by in F6Publishing: 64] [Article Influence: 5.4] [Reference Citation Analysis]
55 Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015;93:52-79. [PMID: 25813885 DOI: 10.1016/j.ejpb.2015.03.018] [Cited by in Crossref: 634] [Cited by in F6Publishing: 558] [Article Influence: 90.6] [Reference Citation Analysis]
56 Sun B, Feng S. Trastuzumab-functionalized nanoparticles of biodegradable copolymers for targeted delivery of docetaxel. Nanomedicine 2009;4:431-45. [DOI: 10.2217/nnm.09.17] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 3.0] [Reference Citation Analysis]
57 Sankar P, Telang AG, Suresh S, Kesavan M, Kannan K, Kalaivanan R, Sarkar SN. Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. International Immunopharmacology 2013;17:65-70. [DOI: 10.1016/j.intimp.2013.05.019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
58 Gao C, Pan J, Lu W, Zhang M, Zhou L, Tian J. In-vitro evaluation of paclitaxel-loaded MPEG–PLGA nanoparticles on laryngeal cancer cells. Anti-Cancer Drugs 2009;20:807-14. [DOI: 10.1097/cad.0b013e328330c811] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Breunig M, Bauer S, Goepferich A. Polymers and nanoparticles: Intelligent tools for intracellular targeting? European Journal of Pharmaceutics and Biopharmaceutics 2008;68:112-28. [DOI: 10.1016/j.ejpb.2007.06.010] [Cited by in Crossref: 149] [Cited by in F6Publishing: 132] [Article Influence: 10.6] [Reference Citation Analysis]
60 Shuai Y, Yang S, Li C, Zhu L, Mao C, Yang M. In situ protein-templated porous protein-hydroxylapatite nanocomposite microspheres for pH-dependent sustained anticancer drug release. J Mater Chem B 2017;5:3945-54. [PMID: 29152304 DOI: 10.1039/C7TB00208D] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 3.6] [Reference Citation Analysis]
61 Prabu P, Chaudhari AA, Aryal S, Dharmaraj N, Park SY, Kim WD, Kim HY. In vitro evaluation of poly(caporlactone) grafted dextran (PGD) nanoparticles with cancer cell. J Mater Sci Mater Med 2008;19:2157-63. [PMID: 18040758 DOI: 10.1007/s10856-007-3307-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
62 Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014;32:711-26. [PMID: 24252561 DOI: 10.1016/j.biotechadv.2013.11.006] [Cited by in Crossref: 286] [Cited by in F6Publishing: 180] [Article Influence: 31.8] [Reference Citation Analysis]
63 Zhang R, Luo K, Yang J, Sima M, Sun Y, Janát-Amsbury MM, Kopeček J. Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. J Control Release 2013;166:66-74. [PMID: 23262201 DOI: 10.1016/j.jconrel.2012.12.009] [Cited by in Crossref: 84] [Cited by in F6Publishing: 83] [Article Influence: 8.4] [Reference Citation Analysis]
64 George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019;561:244-64. [PMID: 30851391 DOI: 10.1016/j.ijpharm.2019.03.011] [Cited by in Crossref: 147] [Cited by in F6Publishing: 97] [Article Influence: 49.0] [Reference Citation Analysis]
65 Prabu P, Chaudhari AA, Ko JA, Dharmaraj N, Park SY, Kim HY, Khil MS. Cellular Uptake and In Vitro Drug Release Studies on Paclitaxel-Loaded Poly(caprolactone)-Grafted Dextran Copolymeric Nanoparticles. Nanobiotechnol 2009;5:42-9. [DOI: 10.1007/s12030-010-9031-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
66 Huang X, Song GY, Yu SJ, Kim I. Water-soluble paclitaxel by conjugation to hyperbranched polyglycidols. J Mater Sci 2013;48:5163-70. [DOI: 10.1007/s10853-013-7302-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
67 Dong Y, Feng SS. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 2007;28:4154-60. [PMID: 17576004 DOI: 10.1016/j.biomaterials.2007.05.026] [Cited by in Crossref: 89] [Cited by in F6Publishing: 85] [Article Influence: 5.9] [Reference Citation Analysis]
68 Noreen S, Pervaiz F, Ashames A, Buabeid M, Fahelelbom K, Shoukat H, Maqbool I, Murtaza G. Optimization of Novel Naproxen-Loaded Chitosan/Carrageenan Nanocarrier-Based Gel for Topical Delivery: Ex Vivo, Histopathological, and In Vivo Evaluation. Pharmaceuticals (Basel) 2021;14:557. [PMID: 34207951 DOI: 10.3390/ph14060557] [Reference Citation Analysis]
69 Roque LV, Dias IS, Cruz N, Rebelo A, Roberto A, Rijo P, Reis CP. Design of Finasteride-Loaded Nanoparticles for Potential Treatment of Alopecia. Skin Pharmacol Physiol 2017;30:197-204. [DOI: 10.1159/000475473] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 6.2] [Reference Citation Analysis]
70 Ranganathan A, Manabe Y, Sugawara T, Hirata T, Shivanna N, Baskaran V. Poly (D, L-lactide-co-glycolide)-phospholipid nanocarrier for efficient delivery of macular pigment lutein: absorption pharmacokinetics in mice and antiproliferative effect in Hep G2 cells. Drug Deliv Transl Res 2019;9:178-91. [PMID: 30284121 DOI: 10.1007/s13346-018-0590-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
71 Kumar Mehata A, Bharti S, Singh P, Viswanadh MK, Kumari L, Agrawal P, Singh S, Koch B, Muthu MS. Trastuzumab decorated TPGS-g-chitosan nanoparticles for targeted breast cancer therapy. Colloids and Surfaces B: Biointerfaces 2019;173:366-77. [DOI: 10.1016/j.colsurfb.2018.10.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 11.3] [Reference Citation Analysis]
72 Englezou PC, Sapet C, Démoulins T, Milona P, Ebensen T, Schulze K, Guzman CA, Poulhes F, Zelphati O, Ruggli N, McCullough KC. Self-Amplifying Replicon RNA Delivery to Dendritic Cells by Cationic Lipids. Mol Ther Nucleic Acids 2018;12:118-34. [PMID: 30195751 DOI: 10.1016/j.omtn.2018.04.019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
73 Das S, Das J, Samadder A, Paul A, Khuda-Bukhsh AR. Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades. Food Chem Toxicol 2013;62:670-80. [PMID: 24120900 DOI: 10.1016/j.fct.2013.09.037] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 6.3] [Reference Citation Analysis]
74 Shakeri F, Shakeri S, Hojjatoleslami M. Preparation and characterization of carvacrol loaded polyhydroxybutyrate nanoparticles by nanoprecipitation and dialysis methods. J Food Sci 2014;79:N697-705. [PMID: 24621231 DOI: 10.1111/1750-3841.12406] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
75 Toragall V, Baskaran V. Chitosan-sodium alginate-fatty acid nanocarrier system: Lutein bioavailability, absorption pharmacokinetics in diabetic rat and protection of retinal cells against H2O2 induced oxidative stress in vitro. Carbohydr Polym 2021;254:117409. [PMID: 33357895 DOI: 10.1016/j.carbpol.2020.117409] [Reference Citation Analysis]
76 Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 2009;30:5737-50. [DOI: 10.1016/j.biomaterials.2009.07.008] [Cited by in Crossref: 208] [Cited by in F6Publishing: 183] [Article Influence: 16.0] [Reference Citation Analysis]
77 Lee Y, Graeser R, Kratz F, Geckeler KE. Paclitaxel-Loaded Polymer Nanoparticles for the Reversal of Multidrug Resistance in Breast Cancer Cells. Adv Funct Mater 2011;21:4211-8. [DOI: 10.1002/adfm.201100853] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 3.8] [Reference Citation Analysis]
78 Wu Y, Ma Q, Song X, Zheng Y, Ren W, Zhang J, Ouyang L, Wu F, He G. Biocompatible poly(ethylene glycol)-poly(γ-cholesterol- L -glutamate) copolymers: Synthesis, characterization, and in vitro studies. J Polym Sci A Polym Chem 2012;50:4532-7. [DOI: 10.1002/pola.26265] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
79 Wu L, Zhao L, Su X, Zhang P, Ling G. Repaglinide-loaded nanostructured lipid carriers with different particle sizes for improving oral absorption: preparation, characterization, pharmacokinetics, and in situ intestinal perfusion. Drug Deliv 2020;27:400-9. [PMID: 31729898 DOI: 10.1080/10717544.2019.1689313] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
80 Majuru S, Oyewumi MO. Nanotechnology in Drug Development and Life Cycle Management. In: de Villiers MM, Aramwit P, Kwon GS, editors. Nanotechnology in Drug Delivery. New York: Springer; 2009. pp. 597-619. [DOI: 10.1007/978-0-387-77668-2_20] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
81 Cartier R, Kaufner L, Paulke BR, Wüstneck R, Pietschmann S, Michel R, Bruhn H, Pison U. Latex nanoparticles for multimodal imaging and detection in vivo. Nanotechnology 2007;18:195102. [DOI: 10.1088/0957-4484/18/19/195102] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
82 Zaimy MA, Jebali A, Bazrafshan B, Mehrtashfar S, Shabani S, Tavakoli A, Hekmatimoghaddam SH, Sarli A, Azizi H, Izadi P, Kazemi B, Shojaei A, Abdalaian A, Tavakkoly-Bazzaz J. Coinhibition of overexpressed genes in acute myeloid leukemia subtype M2 by gold nanoparticles functionalized with five antisense oligonucleotides and one anti-CD33(+)/CD34(+) aptamer. Cancer Gene Ther 2016;23:315-20. [PMID: 27514505 DOI: 10.1038/cgt.2016.33] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
83 Rezaei G, Daghighi SM, Haririan I, Yousefi I, Raoufi M, Rezaee F, Dinarvand R. Protein corona variation in nanoparticles revisited: A dynamic grouping strategy. Colloids Surf B Biointerfaces 2019;179:505-16. [PMID: 31009853 DOI: 10.1016/j.colsurfb.2019.04.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
84 Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1-18. [PMID: 19782542 DOI: 10.1016/j.colsurfb.2009.09.001] [Cited by in Crossref: 2196] [Cited by in F6Publishing: 1829] [Article Influence: 168.9] [Reference Citation Analysis]
85 Zhou S, Sun J, Sun L, Dai Y, Liu L, Li X, Wang J, Weng J, Jia W, Zhang Z. Preparation and characterization of interferon-loaded magnetic biodegradable microspheres. J Biomed Mater Res 2008;87B:189-96. [DOI: 10.1002/jbm.b.31091] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.2] [Reference Citation Analysis]
86 Rodrigues LB, Leite HF, Yoshida MI, Saliba JB, Junior ASC, Faraco AA. In vitro release and characterization of chitosan films as dexamethasone carrier. International Journal of Pharmaceutics 2009;368:1-6. [DOI: 10.1016/j.ijpharm.2008.09.047] [Cited by in Crossref: 81] [Cited by in F6Publishing: 70] [Article Influence: 6.2] [Reference Citation Analysis]
87 Tripathi P, Dwivedi P, Khatik R, Jaiswal AK, Dube A, Shukla P, Mishra PR. Development of 4-sulfated N-acetyl galactosamine anchored chitosan nanoparticles: A dual strategy for effective management of Leishmaniasis. Colloids Surf B Biointerfaces 2015;136:150-9. [PMID: 26381698 DOI: 10.1016/j.colsurfb.2015.08.037] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
88 Kostova B, Kamenska E, Momekov G, Rachev D, Georgiev G, Balashev K. Synthesis and characterization of novel drug delivery nanoparticles based on polyzwitterionic copolymers. European Polymer Journal 2013;49:637-45. [DOI: 10.1016/j.eurpolymj.2012.12.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
89 Dong Y, Feng S. Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. International Journal of Pharmaceutics 2007;342:208-14. [DOI: 10.1016/j.ijpharm.2007.04.031] [Cited by in Crossref: 84] [Cited by in F6Publishing: 73] [Article Influence: 5.6] [Reference Citation Analysis]
90 Feng S, Zhao L, Zhang Z, Bhakta G, Yin Win K, Dong Y, Chien S. Chemotherapeutic engineering: Vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168h in vivo. Chemical Engineering Science 2007;62:6641-8. [DOI: 10.1016/j.ces.2007.08.006] [Cited by in Crossref: 69] [Cited by in F6Publishing: 55] [Article Influence: 4.6] [Reference Citation Analysis]
91 Yang Z, Luo X, Zhang X, Liu J, Jiang Q. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles. Biomed Mater 2013;8:025012. [PMID: 23507576 DOI: 10.1088/1748-6041/8/2/025012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 4.7] [Reference Citation Analysis]
92 Raveendran R, Mullen KM, Wellard RM, Sharma CP, Hoogenboom R, Dargaville TR. Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. European Polymer Journal 2017;93:682-94. [DOI: 10.1016/j.eurpolymj.2017.02.043] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 5.6] [Reference Citation Analysis]
93 Buckheit RW Jr, Watson KM, Morrow KM, Ham AS. Development of topical microbicides to prevent the sexual transmission of HIV. Antiviral Res 2010;85:142-58. [PMID: 19874851 DOI: 10.1016/j.antiviral.2009.10.013] [Cited by in Crossref: 76] [Cited by in F6Publishing: 72] [Article Influence: 5.8] [Reference Citation Analysis]
94 Mi Y, Zhao J, Feng S. Targeted co-delivery of docetaxel, cisplatin and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer. Journal of Controlled Release 2013;169:185-92. [DOI: 10.1016/j.jconrel.2013.01.035] [Cited by in Crossref: 106] [Cited by in F6Publishing: 106] [Article Influence: 11.8] [Reference Citation Analysis]
95 Tiwari SK, Dicks LMT, Popov IV, Karaseva A, Ermakov AM, Suvorov A, Tagg JR, Weeks R, Chikindas ML. Probiotics at War Against Viruses: What Is Missing From the Picture? Front Microbiol 2020;11:1877. [PMID: 32973697 DOI: 10.3389/fmicb.2020.01877] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
96 Gohulkumar M, Gurushankar K, Rajendra Prasad N, Krishnakumar N. Enhanced cytotoxicity and apoptosis-induced anticancer effect of silibinin-loaded nanoparticles in oral carcinoma (KB) cells. Materials Science and Engineering: C 2014;41:274-82. [DOI: 10.1016/j.msec.2014.04.056] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
97 Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J, Feng SS. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013;65:880-90. [PMID: 23220325 DOI: 10.1016/j.addr.2012.11.005] [Cited by in Crossref: 217] [Cited by in F6Publishing: 202] [Article Influence: 21.7] [Reference Citation Analysis]
98 Pan J, Wang Y, Feng SS. Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(lactide)-vitamin E TPGS nanoparticles for cellular and molecular imaging. Biotechnol Bioeng 2008;101:622-33. [PMID: 18727131 DOI: 10.1002/bit.21924] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 2.1] [Reference Citation Analysis]
99 Carletto B, Berton J, Ferreira TN, Dalmolin LF, Paludo KS, Mainardes RM, Farago PV, Favero GM. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth. Colloids Surf B Biointerfaces 2016;144:65-72. [PMID: 27070053 DOI: 10.1016/j.colsurfb.2016.04.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
100 Esmaeili F, Dinarvand R, Ghahremani MH, Ostad SN, Esmaily H, Atyabi F. Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly(lactide-co-glycolide) nanoparticles. Anticancer Drugs 2010;21:43-52. [PMID: 19809300 DOI: 10.1097/CAD.0b013e328331f934] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
101 Muthu MS, Feng SS. Nanopharmacology of liposomes developed for cancer therapy. Nanomedicine (Lond) 2010;5:1017-9. [PMID: 20874016 DOI: 10.2217/nnm.10.75] [Cited by in Crossref: 54] [Cited by in F6Publishing: 44] [Article Influence: 4.9] [Reference Citation Analysis]
102 Papadimitriou S, Papageorgiou GZ, Kanaze FI, Georgarakis M, Bikiaris DN. Nanoencapsulation of Nimodipine in Novel Biocompatible Poly(propylene-co-butylene succinate) Aliphatic Copolyesters for Sustained Release. Journal of Nanomaterials 2009;2009:1-11. [DOI: 10.1155/2009/716242] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
103 Muthu MS, Feng S. Targeted nanomedicine for detection and treatment of circulating tumor cells. Nanomedicine 2011;6:579-81. [DOI: 10.2217/nnm.11.17] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
104 Vijayakumar MR, Muthu MS, Singh S. Copolymers of poly(lactic acid) and D-α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicines: versatile multifunctional platforms for cancer diagnosis and therapy. Expert Opin Drug Deliv 2013;10:529-43. [PMID: 23316695 DOI: 10.1517/17425247.2013.758632] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
105 Rata-aguilar A, Sánchez-moreno P, Jódar-reyes AB, Martín-rodríguez A, Boulaiz H, Marchal-corrales JA, Peula-garcía JM, Ortega-vinuesa JL. Colloidal stability and “in vitro” antitumor targeting ability of lipid nanocapsules coated by folate–chitosan conjugates. Journal of Bioactive and Compatible Polymers 2012;27:388-404. [DOI: 10.1177/0883911512447492] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
106 Aldahoun MA, Jaafar MS, Al-akhras MH, Bououdina M. Enhanced nanocurcumin toxicity against (PC3) tumor and microbial by using magnetic field in vitro. Artificial Cells, Nanomedicine, and Biotechnology 2017;45:843-53. [DOI: 10.1080/21691401.2016.1178137] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
107 Ahmed S, Govender T, Khan I, Rehman NU, Ali W, Shah SMH, Khan S, Hussain Z, Ullah R, Alsaid MS. Experimental and molecular modeling approach to optimize suitable polymers for fabrication of stable fluticasone nanoparticles with enhanced dissolution and antimicrobial activity. Drug Des Devel Ther 2018;12:255-69. [PMID: 29440875 DOI: 10.2147/DDDT.S148912] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
108 Muthu MS, Avinash Kulkarni S, Liu Y, Feng S. Development of docetaxel-loaded vitamin E TPGS micelles: formulation optimization, effects on brain cancer cells and biodistribution in rats. Nanomedicine 2012;7:353-64. [DOI: 10.2217/nnm.11.111] [Cited by in Crossref: 72] [Cited by in F6Publishing: 69] [Article Influence: 7.2] [Reference Citation Analysis]
109 Fang Y, Tan J, Lim S, Soh S. Rupturing cancer cells by the expansion of functionalized stimuli-responsive hydrogels. NPG Asia Mater 2018;10:e465-e465. [DOI: 10.1038/am.2017.232] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
110 Bakar LM, Abdullah MZ, Doolaanea AA, Ichwan SJA. PLGA-Chitosan nanoparticle-mediated gene delivery for oral cancer treatment: A brief review. J Phys : Conf Ser 2017;884:012117. [DOI: 10.1088/1742-6596/884/1/012117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
111 Mishra B, Chaurasia S. Design of novel chemotherapeutic delivery systems for colon cancer therapy based on oral polymeric nanoparticles. Therapeutic Delivery 2017;8:29-47. [DOI: 10.4155/tde-2016-0058] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
112 Feng SS, Zeng W, Teng Lim Y, Zhao L, Yin Win K, Oakley R, Hin Teoh S, Hang Lee RC, Pan S. Vitamin E TPGS-emulsified poly(lactic-co-glycolic acid) nanoparticles for cardiovascular restenosis treatment. Nanomedicine (Lond) 2007;2:333-44. [PMID: 17716178 DOI: 10.2217/17435889.2.3.333] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 2.6] [Reference Citation Analysis]
113 Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target 2008;16:108-23. [PMID: 18274932 DOI: 10.1080/10611860701794353] [Cited by in Crossref: 228] [Cited by in F6Publishing: 183] [Article Influence: 16.3] [Reference Citation Analysis]
114 Jain D, Bajaj A, Athawale R, Shrikhande S, Goel PN, Nikam Y, Gude R, Patil S, Prashant Raut P. Surface-coated PLA nanoparticles loaded with temozolomide for improved brain deposition and potential treatment of gliomas: development, characterization and in vivo studies. Drug Deliv 2016;23:999-1016. [PMID: 25026415 DOI: 10.3109/10717544.2014.926574] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
115 Zhang Y, Li X, Huang Z, Zheng W, Fan C, Chen T. Enhancement of cell permeabilization apoptosis-inducing activity of selenium nanoparticles by ATP surface decoration. Nanomedicine 2013;9:74-84. [PMID: 22542821 DOI: 10.1016/j.nano.2012.04.002] [Cited by in Crossref: 99] [Cited by in F6Publishing: 87] [Article Influence: 9.9] [Reference Citation Analysis]
116 Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan SU. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials (Basel) 2020;10:E1970. [PMID: 33027891 DOI: 10.3390/nano10101970] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
117 Sun B, Ranganathan B, Feng S. Multifunctional poly(d,l-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 2008;29:475-86. [DOI: 10.1016/j.biomaterials.2007.09.038] [Cited by in Crossref: 191] [Cited by in F6Publishing: 176] [Article Influence: 13.6] [Reference Citation Analysis]
118 Raveendran R, Bhuvaneshwar G, Sharma CP. In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells. J Biomater Appl 2013;27:811-27. [PMID: 22274881 DOI: 10.1177/0885328211427473] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 4.6] [Reference Citation Analysis]
119 Tahara K, Sakai T, Yamamoto H, Takeuchi H, Hirashima N, Kawashima Y. Improved cellular uptake of chitosan-modified PLGA nanospheres by A549 cells. International Journal of Pharmaceutics 2009;382:198-204. [DOI: 10.1016/j.ijpharm.2009.07.023] [Cited by in Crossref: 129] [Cited by in F6Publishing: 114] [Article Influence: 9.9] [Reference Citation Analysis]
120 Ishihara T, Kubota T, Choi T, Takahashi M, Ayano E, Kanazawa H, Higaki M. Polymeric nanoparticles encapsulating betamethasone phosphate with different release profiles and stealthiness. Int J Pharm 2009;375:148-54. [PMID: 19481700 DOI: 10.1016/j.ijpharm.2009.04.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 2.5] [Reference Citation Analysis]
121 Feng SS. NANOMEDICINE: NANOPARTICLES OF BIODEGRADABLE POLYMERS FOR CANCER DIAGNOSIS AND TREATMENT. COSMOS 2011;04:185-201. [DOI: 10.1142/s0219607708000378] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
122 Tığlı Aydın RS, Pulat M. 5-Fluorouracil Encapsulated Chitosan Nanoparticles for pH-Stimulated Drug Delivery: Evaluation of Controlled Release Kinetics. Journal of Nanomaterials 2012;2012:1-10. [DOI: 10.1155/2012/313961] [Cited by in Crossref: 84] [Cited by in F6Publishing: 53] [Article Influence: 8.4] [Reference Citation Analysis]
123 Saranya S, Radha KV. Review of Nanobiopolymers for Controlled Drug Delivery. Polymer-Plastics Technology and Engineering 2014;53:1636-46. [DOI: 10.1080/03602559.2014.915035] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
124 Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021;50:6013-41. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]