BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vázquez-martínez ER, Gómez-viais YI, García-gómez E, Reyes-mayoral C, Reyes-muñoz E, Camacho-arroyo I, Cerbón M. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction 2019;158:R27-40. [DOI: 10.1530/rep-18-0449] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Fauque P, De Mouzon J, Devaux A, Epelboin S, Gervoise-Boyer MJ, Levy R, Valentin M, Viot G, Bergère A, De Vienne C, Jonveaux P, Pessione F. Reproductive technologies, female infertility, and the risk of imprinting-related disorders. Clin Epigenetics 2020;12:191. [PMID: 33308308 DOI: 10.1186/s13148-020-00986-3] [Reference Citation Analysis]
2 Mimouni NEH, Paiva I, Barbotin AL, Timzoura FE, Plassard D, Le Gras S, Ternier G, Pigny P, Catteau-Jonard S, Simon V, Prevot V, Boutillier AL, Giacobini P. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab 2021;33:513-530.e8. [PMID: 33539777 DOI: 10.1016/j.cmet.2021.01.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
3 Cao P, Yang W, Wang P, Li X, Nashun B. Characterization of DNA Methylation and Screening of Epigenetic Markers in Polycystic Ovary Syndrome. Front Cell Dev Biol 2021;9:664843. [PMID: 34113617 DOI: 10.3389/fcell.2021.664843] [Reference Citation Analysis]
4 Dumesic DA, Padmanabhan V, Chazenbalk GD, Abbott DH. Polycystic ovary syndrome as a plausible evolutionary outcome of metabolic adaptation. Reprod Biol Endocrinol 2022;20:12. [PMID: 35012577 DOI: 10.1186/s12958-021-00878-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
5 Yao X, Li F, Wei Z, Ei-samahy MA, Feng X, Yang F, Wang F. Integrative Genome-Wide DNA Methylome and Transcriptome Analysis of Ovaries from Hu Sheep with High and Low Prolific. Front Cell Dev Biol 2022;10:820558. [DOI: 10.3389/fcell.2022.820558] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Echiburú B, Milagro F, Crisosto N, Pérez-Bravo F, Flores C, Arpón A, Salas-Pérez F, Recabarren SE, Sir-Petermann T, Maliqueo M. DNA methylation in promoter regions of genes involved in the reproductive and metabolic function of children born to women with PCOS. Epigenetics 2020;15:1178-94. [PMID: 32283997 DOI: 10.1080/15592294.2020.1754674] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
7 Chen Y, Chai X, Zhao Y, Yang X, Zhong C, Feng Y. Investigation of the Mechanism of Zishen Yutai Pills on Polycystic Ovary Syndrome: A Network Pharmacology and Molecular Docking Approach. Evid Based Complement Alternat Med 2021;2021:6843828. [PMID: 34956381 DOI: 10.1155/2021/6843828] [Reference Citation Analysis]
8 McIlvenna LC, Altıntaş A, Patten RK, McAinch AJ, Rodgers RJ, Stepto NK, Barrès R, Moreno-Asso A. Transforming growth factor β1 impairs the transcriptomic response to contraction in myotubes from women with polycystic ovary syndrome. J Physiol 2022. [PMID: 35760527 DOI: 10.1113/JP282954] [Reference Citation Analysis]
9 Carbone L, Davis BA, Fei SS, White A, Nevonen KA, Takahashi D, Vinson A, True C, Roberts CT Jr, Varlamov O. Synergistic Effects of Hyperandrogenemia and Obesogenic Western-style Diet on Transcription and DNA Methylation in Visceral Adipose Tissue of Nonhuman Primates. Sci Rep 2019;9:19232. [PMID: 31848372 DOI: 10.1038/s41598-019-55291-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Nautiyal H, Imam SS, Alshehri S, Ghoneim MM, Afzal M, Alzarea SI, Güven E, Al-abbasi FA, Kazmi I. Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines 2022;10:540. [DOI: 10.3390/biomedicines10030540] [Reference Citation Analysis]
11 Abbott DH, Rogers J, Dumesic DA, Levine JE. Naturally Occurring and Experimentally Induced Rhesus Macaque Models for Polycystic Ovary Syndrome: Translational Gateways to Clinical Application. Med Sci (Basel) 2019;7:E107. [PMID: 31783681 DOI: 10.3390/medsci7120107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
12 Menezo Y, Clement P, Clement A, Elder K. Methylation: An Ineluctable Biochemical and Physiological Process Essential to the Transmission of Life. Int J Mol Sci 2020;21:E9311. [PMID: 33297303 DOI: 10.3390/ijms21239311] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Li W, Ma X, Wang F, Chen S, Guo Q, Sun F, Duan Y, Yuan Q. SNHG3 Affects Gastric Cancer Development by Regulating SEPT9 Methylation. Journal of Oncology 2022;2022:1-11. [DOI: 10.1155/2022/3433406] [Reference Citation Analysis]
14 Moghetti P, Tosi F. Insulin resistance and PCOS: chicken or egg? J Endocrinol Invest. 2021;44:233-244. [PMID: 32648001 DOI: 10.1007/s40618-020-01351-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
15 Du C, Chen X. Transcriptome Profiling of Oocytes at the Germinal Vesicle Stage from Women from Mongolia with Polycystic Ovary Syndrome. Int J Gen Med 2021;14:4469-78. [PMID: 34413674 DOI: 10.2147/IJGM.S321853] [Reference Citation Analysis]
16 Qin Y, Li T, Zhao H, Mao Z, Ding C, Kang Y. Integrated Transcriptomic and Epigenetic Study of PCOS: Impact of Map3k1 and Map1lc3a Promoter Methylation on Autophagy. Front Genet 2021;12:620241. [PMID: 33763111 DOI: 10.3389/fgene.2021.620241] [Reference Citation Analysis]
17 Rani S, Chandna P. Multiomics Analysis-Based Biomarkers in Diagnosis of Polycystic Ovary Syndrome. Reprod Sci 2022. [PMID: 35084716 DOI: 10.1007/s43032-022-00863-9] [Reference Citation Analysis]
18 Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin Epigenetics 2021;13:116. [PMID: 34034824 DOI: 10.1186/s13148-021-01103-8] [Reference Citation Analysis]
19 Khatun M, Meltsov A, Lavogina D, Loid M, Kask K, Arffman RK, Rossi HR, Lättekivi F, Jääger K, Krjutškov K, Rinken A, Salumets A, Piltonen TT. Decidualized endometrial stromal cells present with altered androgen response in PCOS. Sci Rep 2021;11:16287. [PMID: 34381107 DOI: 10.1038/s41598-021-95705-0] [Reference Citation Analysis]
20 Eiras MC, Pinheiro DP, Romcy KAM, Ferriani RA, Reis RMD, Furtado CLM. Polycystic Ovary Syndrome: the Epigenetics Behind the Disease. Reprod Sci 2021. [PMID: 33826098 DOI: 10.1007/s43032-021-00516-3] [Reference Citation Analysis]
21 Schiuma N, Costantino A, Bartolotti T, Dattilo M, Bini V, Aglietti MC, Renga M, Favilli A, Falorni A, Gerli S. Micronutrients in support to the one carbon cycle for the modulation of blood fasting homocysteine in PCOS women. J Endocrinol Invest 2020;43:779-86. [PMID: 31845191 DOI: 10.1007/s40618-019-01163-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Sinha N, Roy S, Huang B, Wang J, Padmanabhan V, Sen A. Developmental programming: prenatal testosterone-induced epigenetic modulation and its effect on gene expression in sheep ovary†. Biol Reprod 2020;102:1045-54. [PMID: 31930385 DOI: 10.1093/biolre/ioaa007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
23 Liu YN, Qin Y, Wu B, Peng H, Li M, Luo H, Liu LL. DNA Methylation in Polycystic Ovary Syndrome:Emerging Evidence and Challenges. Reprod Toxicol 2022:S0890-6238(22)00059-4. [PMID: 35562068 DOI: 10.1016/j.reprotox.2022.04.010] [Reference Citation Analysis]