BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hwang DH, Shin HY, Kwon MJ, Choi JY, Ryu BY, Kim BG. Survival of neural stem cell grafts in the lesioned spinal cord is enhanced by a combination of treadmill locomotor training via insulin-like growth factor-1 signaling. J Neurosci 2014;34:12788-800. [PMID: 25232115 DOI: 10.1523/JNEUROSCI.5359-13.2014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 4.1] [Reference Citation Analysis]
Number Citing Articles
1 Norden DM, Faw TD, McKim DB, Deibert RJ, Fisher LC, Sheridan JF, Godbout JP, Basso DM. Bone Marrow-Derived Monocytes Drive the Inflammatory Microenvironment in Local and Remote Regions after Thoracic Spinal Cord Injury. J Neurotrauma 2019;36:937-49. [PMID: 30014767 DOI: 10.1089/neu.2018.5806] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
2 Kawai M, Imaizumi K, Ishikawa M, Shibata S, Shinozaki M, Shibata T, Hashimoto S, Kitagawa T, Ago K, Kajikawa K, Shibata R, Kamata Y, Ushiba J, Koga K, Furue H, Matsumoto M, Nakamura M, Nagoshi N, Okano H. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function. Cell Rep 2021;37:110019. [PMID: 34818559 DOI: 10.1016/j.celrep.2021.110019] [Reference Citation Analysis]
3 Ahuja CS, Fehlings M. Concise Review: Bridging the Gap: Novel Neuroregenerative and Neuroprotective Strategies in Spinal Cord Injury. Stem Cells Transl Med 2016;5:914-24. [PMID: 27130222 DOI: 10.5966/sctm.2015-0381] [Cited by in Crossref: 98] [Cited by in F6Publishing: 93] [Article Influence: 16.3] [Reference Citation Analysis]
4 Kim HN, Pak ME, Shin MJ, Kim SY, Shin YB, Yun YJ, Shin HK, Choi BT. Beneficial effects of Jiawei Shenqi-wan and treadmill training on deficits associated with neonatal hypoxic-ischemia in rats. Exp Ther Med 2017;13:2134-42. [PMID: 28565820 DOI: 10.3892/etm.2017.4286] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
5 Itoi T, Kawata S, Fukuda Y, Maejima S. Effect of a Corset on the Gait of Healthy Beagle Dogs. Animals (Basel) 2021;11:2650. [PMID: 34573619 DOI: 10.3390/ani11092650] [Reference Citation Analysis]
6 Ham TR, Pukale DD, Hamrangsekachaee M, Leipzig ND. Subcutaneous priming of protein-functionalized chitosan scaffolds improves function following spinal cord injury. Mater Sci Eng C Mater Biol Appl 2020;110. [PMID: 32076364 DOI: 10.1016/j.msec.2020.110656] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
7 Hwang DH, Park HH, Shin HY, Cui Y, Kim BG. Insulin-like Growth Factor-1 Receptor Dictates Beneficial Effects of Treadmill Training by Regulating Survival and Migration of Neural Stem Cell Grafts in the Injured Spinal Cord. Exp Neurobiol 2018;27:489-507. [PMID: 30636901 DOI: 10.5607/en.2018.27.6.489] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
8 Muresanu DF, Sharma A, Lafuente JV, Patnaik R, Tian ZR, Nyberg F, Sharma HS. Nanowired Delivery of Growth Hormone Attenuates Pathophysiology of Spinal Cord Injury and Enhances Insulin-Like Growth Factor-1 Concentration in the Plasma and the Spinal Cord. Mol Neurobiol 2015;52:837-45. [PMID: 26126514 DOI: 10.1007/s12035-015-9298-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
9 Qian K, Xu TY, Wang X, Ma T, Zhang KX, Yang K, Qian TD, Shi J, Li LX, Wang Z. Effects of neural stem cell transplantation on the motor function of rats with contusion spinal cord injuries: a meta-analysis. Neural Regen Res 2020;15:748-58. [PMID: 31638100 DOI: 10.4103/1673-5374.266915] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Kim HN, Pak ME, Shin MJ, Kim SY, Shin YB, Yun YJ, Shin HK, Choi BT. Comparative analysis of the beneficial effects of treadmill training and electroacupuncture in a rat model of neonatal hypoxia-ischemia. Int J Mol Med 2017;39:1393-402. [PMID: 28487967 DOI: 10.3892/ijmm.2017.2970] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
11 Mao L, Gao W, Chen S, Song Y, Song C, Zhou Z, Zhao H, Zhou K, Wang W, Zhu K, Liu C, Mei X. Epothilone B impairs functional recovery after spinal cord injury by increasing secretion of macrophage colony-stimulating factor. Cell Death Dis 2017;8:e3162. [PMID: 29095439 DOI: 10.1038/cddis.2017.542] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
12 Ham TR, Leipzig ND. Biomaterial strategies for limiting the impact of secondary events following spinal cord injury. Biomed Mater 2018;13:024105. [PMID: 29155409 DOI: 10.1088/1748-605X/aa9bbb] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
13 Jia G, Diao Z, Liu Y, Sun C, Wang C. Neural stem cell-conditioned medium ameliorates Aβ25-35-induced damage in SH-SY5Y cells by protecting mitochondrial function. Bosn J Basic Med Sci 2021;21:179-86. [PMID: 32156251 DOI: 10.17305/bjbms.2020.4570] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Hwang DH, Shin HY, Kim BG. Fortuitous benefits of activity-based rehabilitation in stem cell-based therapy for spinal cord repair: enhancing graft survival. Neural Regen Res 2015;10:1589-90. [PMID: 26692851 DOI: 10.4103/1673-5374.167750] [Reference Citation Analysis]
15 Zavvarian MM, Toossi A, Khazaei M, Hong J, Fehlings M. Novel innovations in cell and gene therapies for spinal cord injury. F1000Res 2020;9:F1000 Faculty Rev-279. [PMID: 32399196 DOI: 10.12688/f1000research.21989.1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
16 Marcos AB, Forner S, Martini AC, Patrício ES, Clarke JR, Costa R, Felix-Alves J, Vieira VJ, de Andrade EL, Mazzuco TL, Calixto JB, Figueiredo CP. Temporal and Regional Expression of Glucose-Dependent Insulinotropic Peptide and Its Receptor in Spinal Cord Injured Rats. J Neurotrauma 2016;33:261-8. [PMID: 26421658 DOI: 10.1089/neu.2015.3877] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
17 Torikoshi S, Morizane A, Shimogawa T, Samata B, Miyamoto S, Takahashi J. Exercise Promotes Neurite Extensions from Grafted Dopaminergic Neurons in the Direction of the Dorsolateral Striatum in Parkinson's Disease Model Rats. J Parkinsons Dis 2020;10:511-21. [PMID: 31929121 DOI: 10.3233/JPD-191755] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 2020;9:1509-30. [PMID: 32691994 DOI: 10.1002/sctm.19-0135] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
19 Tashiro S, Tsuji O, Shinozaki M, Shibata T, Yoshida T, Tomioka Y, Unai K, Kondo T, Itakura G, Kobayashi Y, Yasuda A, Nori S, Fujiyoshi K, Nagoshi N, Kawakami M, Uemura O, Yamada S, Tsuji T, Okano H, Nakamura M. Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review. NPJ Regen Med 2021;6:81. [PMID: 34824291 DOI: 10.1038/s41536-021-00191-7] [Reference Citation Analysis]
20 Tashiro S, Nakamura M, Okano H. The prospects of regenerative medicine combined with rehabilitative approaches for chronic spinal cord injury animal models. Neural Regen Res 2017;12:43-6. [PMID: 28250738 DOI: 10.4103/1673-5374.198972] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
21 Wang D, Zhang J. Effects of hypothermia combined with neural stem cell transplantation on recovery of neurological function in rats with spinal cord injury. Mol Med Rep 2015;11:1759-67. [PMID: 25385306 DOI: 10.3892/mmr.2014.2905] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
22 Hong LTA, Kim YM, Park HH, Hwang DH, Cui Y, Lee EM, Yahn S, Lee JK, Song SC, Kim BG. An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nat Commun 2017;8:533. [PMID: 28912446 DOI: 10.1038/s41467-017-00583-8] [Cited by in Crossref: 92] [Cited by in F6Publishing: 93] [Article Influence: 18.4] [Reference Citation Analysis]
23 Tsuji O, Sugai K, Yamaguchi R, Tashiro S, Nagoshi N, Kohyama J, Iida T, Ohkubo T, Itakura G, Isoda M, Shinozaki M, Fujiyoshi K, Kanemura Y, Yamanaka S, Nakamura M, Okano H. Concise Review: Laying the Groundwork for a First-In-Human Study of an Induced Pluripotent Stem Cell-Based Intervention for Spinal Cord Injury. Stem Cells 2019;37:6-13. [PMID: 30371964 DOI: 10.1002/stem.2926] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 12.8] [Reference Citation Analysis]
24 Tashiro S, Nishimura S, Iwai H, Sugai K, Zhang L, Shinozaki M, Iwanami A, Toyama Y, Liu M, Okano H. Functional Recovery from Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury. Sci Rep. 2016;6:30898. [PMID: 27485458 DOI: 10.1038/srep30898] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 7.7] [Reference Citation Analysis]