BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wright MC, Potluri S, Wang X, Dentcheva E, Gautam D, Tessler A, Wess J, Rich MM, Son YJ. Distinct muscarinic acetylcholine receptor subtypes contribute to stability and growth, but not compensatory plasticity, of neuromuscular synapses. J Neurosci 2009;29:14942-55. [PMID: 19940190 DOI: 10.1523/JNEUROSCI.2276-09.2009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.2] [Reference Citation Analysis]
Number Citing Articles
1 Jones MR, Villalón E, Northcutt AJ, Calcutt NA, Garcia ML. Differential effects of myostatin deficiency on motor and sensory axons. Muscle Nerve 2017;56:E100-7. [PMID: 28073155 DOI: 10.1002/mus.25570] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
2 Nadal L, Garcia N, Hurtado E, Simó A, Tomàs M, Lanuza MA, Santafé M, Tomàs J. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction. Mol Brain 2016;9:67. [PMID: 27339059 DOI: 10.1186/s13041-016-0248-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
3 Zhu H, Bhattacharyya BJ, Lin H, Gomez CM. Skeletal muscle IP3R1 receptors amplify physiological and pathological synaptic calcium signals. J Neurosci 2011;31:15269-83. [PMID: 22031873 DOI: 10.1523/JNEUROSCI.3766-11.2011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
4 Malomouzh AI, Arkhipova SS, Nikolsky EE, Vyskočil F. Immunocytochemical Demonstration of M1 Muscarinic Acetylcholine Receptors at the Presynaptic and Postsynaptic Membranes of Rat Diaphragm Endplates. Physiol Res. [DOI: 10.33549/physiolres.932131] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
5 Arbour D, Tremblay E, Martineau É, Julien JP, Robitaille R. Early and persistent abnormal decoding by glial cells at the neuromuscular junction in an ALS model. J Neurosci 2015;35:688-706. [PMID: 25589763 DOI: 10.1523/JNEUROSCI.1379-14.2015] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
6 Dalet FG, Guadalupe TF, María Del Carmen CH, Humberto GA, Antonio SU. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes. Neural Regen Res. 2013;8:2290-2302. [PMID: 25206539 DOI: 10.3969/j.issn.1673-5374.2013.24.009] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
7 Martin M, Li K, Wright MC, Lepore AC. Functional and morphological assessment of diaphragm innervation by phrenic motor neurons. J Vis Exp 2015;:e52605. [PMID: 26066371 DOI: 10.3791/52605] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
8 Fu Y, Wu X, Lu J, Huang ZJ. Presynaptic GABA(B) Receptor Regulates Activity-Dependent Maturation and Patterning of Inhibitory Synapses through Dynamic Allocation of Synaptic Vesicles. Front Cell Neurosci 2012;6:57. [PMID: 23227002 DOI: 10.3389/fncel.2012.00057] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
9 An MC, Lin W, Yang J, Dominguez B, Padgett D, Sugiura Y, Aryal P, Gould TW, Oppenheim RW, Hester ME, Kaspar BK, Ko CP, Lee KF. Acetylcholine negatively regulates development of the neuromuscular junction through distinct cellular mechanisms. Proc Natl Acad Sci U S A 2010;107:10702-7. [PMID: 20498043 DOI: 10.1073/pnas.1004956107] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
10 Tomàs J, Garcia N, Lanuza MA, Santafé MM, Tomàs M, Nadal L, Hurtado E, Simó-Ollé A, Cilleros-Mañé V, Just-Borràs L. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways. Front Pharmacol 2018;9:397. [PMID: 29740322 DOI: 10.3389/fphar.2018.00397] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
11 Cheng L, Sami A, Ghosh B, Urban MW, Heinsinger NM, Liang SS, Smith GM, Wright MC, Li S, Lepore AC. LAR inhibitory peptide promotes recovery of diaphragm function and multiple forms of respiratory neural circuit plasticity after cervical spinal cord injury. Neurobiol Dis 2021;147:105153. [PMID: 33127470 DOI: 10.1016/j.nbd.2020.105153] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021;12:494-514. [PMID: 33815879 DOI: 10.14336/AD.2020.0708] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Arbour D, Vande Velde C, Robitaille R. New perspectives on amyotrophic lateral sclerosis: the role of glial cells at the neuromuscular junction. J Physiol 2017;595:647-61. [PMID: 27633977 DOI: 10.1113/JP270213] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 6.3] [Reference Citation Analysis]
14 MacDonald R, Barbat-Artigas S, Cho C, Peng H, Shang J, Moustaine A, Carbonetto S, Robitaille R, Chalifour LE, Paudel H. A Novel Egr-1-Agrin Pathway and Potential Implications for Regulation of Synaptic Physiology and Homeostasis at the Neuromuscular Junction. Front Aging Neurosci 2017;9:258. [PMID: 28824419 DOI: 10.3389/fnagi.2017.00258] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
15 Wright M, Kim A, Son YJ. Subcutaneous administration of muscarinic antagonists and triple-immunostaining of the levator auris longus muscle in mice. J Vis Exp 2011:3124. [PMID: 21931291 DOI: 10.3791/3124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
16 Zelada D, Bermedo-García F, Collao N, Henríquez JP. Motor function recovery: deciphering a regenerative niche at the neuromuscular synapse. Biol Rev Camb Philos Soc 2021;96:752-66. [PMID: 33336525 DOI: 10.1111/brv.12675] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Tomàs J, Garcia N, Lanuza MA, Santafé MM, Tomàs M, Nadal L, Hurtado E, Simó A, Cilleros V. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development. Front Mol Neurosci 2017;10:132. [PMID: 28559796 DOI: 10.3389/fnmol.2017.00132] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
18 Cunningham ME, Meehan GR, Robinson S, Yao D, McGonigal R, Willison HJ. Perisynaptic Schwann cells phagocytose nerve terminal debris in a mouse model of Guillain-Barré syndrome. J Peripher Nerv Syst 2020;25:143-51. [PMID: 32250537 DOI: 10.1111/jns.12373] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
19 Di Maio A, Skuba A, Himes BT, Bhagat SL, Hyun JK, Tessler A, Bishop D, Son YJ. In vivo imaging of dorsal root regeneration: rapid immobilization and presynaptic differentiation at the CNS/PNS border. J Neurosci 2011;31:4569-82. [PMID: 21430157 DOI: 10.1523/JNEUROSCI.4638-10.2011] [Cited by in Crossref: 62] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
20 Castro R, Taetzsch T, Vaughan SK, Godbe K, Chappell J, Settlage RE, Valdez G. Specific labeling of synaptic schwann cells reveals unique cellular and molecular features. Elife 2020;9:e56935. [PMID: 32584256 DOI: 10.7554/eLife.56935] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
21 Li K, Javed E, Hala TJ, Sannie D, Regan KA, Maragakis NJ, Wright MC, Poulsen DJ, Lepore AC. Transplantation of glial progenitors that overexpress glutamate transporter GLT1 preserves diaphragm function following cervical SCI. Mol Ther 2015;23:533-48. [PMID: 25492561 DOI: 10.1038/mt.2014.236] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
22 Ko CP, Robitaille R. Perisynaptic Schwann Cells at the Neuromuscular Synapse: Adaptable, Multitasking Glial Cells. Cold Spring Harb Perspect Biol 2015;7:a020503. [PMID: 26430218 DOI: 10.1101/cshperspect.a020503] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
23 Kovyazina IV, Khamidullina AA, Fedorov NS, Malomouzh AI. Effects of VU 0238429, an Allosteric Modulator of M5 Cholinoreceptors, on Neuromuscular Transmission in the Mouse Diaphragm. J Evol Biochem Phys 2022;58:149-57. [DOI: 10.1134/s0022093022010136] [Reference Citation Analysis]
24 Martineau É, Arbour D, Vallée J, Robitaille R. Properties of Glial Cell at the Neuromuscular Junction Are Incompatible with Synaptic Repair in the SOD1G37R ALS Mouse Model. J Neurosci 2020;40:7759-77. [PMID: 32859714 DOI: 10.1523/JNEUROSCI.1748-18.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Li K, Javed E, Scura D, Hala TJ, Seetharam S, Falnikar A, Richard JP, Chorath A, Maragakis NJ, Wright MC, Lepore AC. Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury. Exp Neurol 2015;271:479-92. [PMID: 26216662 DOI: 10.1016/j.expneurol.2015.07.020] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 6.3] [Reference Citation Analysis]
26 Ghosh B, Nong J, Wang Z, Urban MW, Heinsinger NM, Trovillion VA, Wright MC, Lepore AC, Zhong Y. A hydrogel engineered to deliver minocycline locally to the injured cervical spinal cord protects respiratory neural circuitry and preserves diaphragm function. Neurobiol Dis 2019;127:591-604. [PMID: 31028873 DOI: 10.1016/j.nbd.2019.04.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
27 Perez-Gonzalez AP, Provost F, Rousse I, Piovesana R, Benzina O, Darabid H, Lamoureux B, Wang YS, Arbour D, Robitaille R. Functional adaptation of glial cells at neuromuscular junctions in response to injury. Glia 2022. [PMID: 35474470 DOI: 10.1002/glia.24184] [Reference Citation Analysis]
28 Garcia N, Tomàs M, Santafé MM, Besalduch N, Lanuza MA, Tomàs J. The interaction between tropomyosin-related kinase B receptors and presynaptic muscarinic receptors modulates transmitter release in adult rodent motor nerve terminals. J Neurosci 2010;30:16514-22. [PMID: 21147991 DOI: 10.1523/JNEUROSCI.2676-10.2010] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
29 Ghosh B, Wang Z, Nong J, Urban MW, Zhang Z, Trovillion VA, Wright MC, Zhong Y, Lepore AC. Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function. J Neurosci 2018;38:5982-95. [PMID: 29891731 DOI: 10.1523/JNEUROSCI.3084-17.2018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]