BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Simões SM, Figueiras AR, Veiga F, Concheiro A, Alvarez-Lorenzo C. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv 2015;12:297-318. [PMID: 25227130 DOI: 10.1517/17425247.2015.960841] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 6.9] [Reference Citation Analysis]
Number Citing Articles
1 Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int J Nanomedicine 2020;15:10215-40. [PMID: 33364755 DOI: 10.2147/IJN.S285134] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Zarrintaj P, Yazdi MK, Bagheri B, Kim YC, Ramsey JD, Saeb MR. Block copolymers for nanoscale drug and gene delivery. Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier; 2020. pp. 181-200. [DOI: 10.1016/b978-0-08-102985-5.00009-7] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Moshe H, Davizon Y, Menaker Raskin M, Sosnik A. Novel poly(vinyl alcohol)-based amphiphilic nanogels by non-covalent boric acid crosslinking of polymeric micelles. Biomater Sci 2017;5:2295-309. [PMID: 29019482 DOI: 10.1039/c7bm00675f] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
4 Mandracchia D, Trapani A, Perteghella S, Sorrenti M, Catenacci L, Torre ML, Trapani G, Tripodo G. pH-sensitive inulin-based nanomicelles for intestinal site-specific and controlled release of celecoxib. Carbohydrate Polymers 2018;181:570-8. [DOI: 10.1016/j.carbpol.2017.11.110] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 6.8] [Reference Citation Analysis]
5 Akhter DT, Simpson JD, Fletcher NL, Houston ZH, Fuchs AV, Bell CA, Thurecht KJ. Oral Delivery of Multicompartment Nanomedicines for Colorectal Cancer Therapeutics: Combining Loco‐Regional Delivery with Cell‐Target Specificity. Adv Therap 2020;3:1900171. [DOI: 10.1002/adtp.201900171] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Li M, Xin M, Guo C, Lin G, Wu X. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev Ind Pharm 2017;43:1846-57. [PMID: 28665151 DOI: 10.1080/03639045.2017.1349787] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
7 Magalhães M, Figueiras A, Veiga F. Smart micelleplexes. Design and Development of New Nanocarriers. Elsevier; 2018. pp. 257-91. [DOI: 10.1016/b978-0-12-813627-0.00007-7] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
8 Patel D, Rathod S, Tiwari S, Ray D, Kuperkar K, Aswal VK, Bahadur P. Self-Association in EO-BO-EO Triblock Copolymers as a Nanocarrier Template for Sustainable Release of Anticancer Drugs. J Phys Chem B 2020;124:11750-61. [PMID: 33305575 DOI: 10.1021/acs.jpcb.0c09386] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
9 Li P, Tian Y, Ke XM, Tan QC, Han X, Ma HY, Pei J, Lin JZ, Xu RC, Han L, Yang M, Zhang DK. Amphiphilic Block Copolymers: A Novel Substance for Bitter-Masking in Aqueous Solutions. Mol Pharm 2020;17:1586-95. [PMID: 32186879 DOI: 10.1021/acs.molpharmaceut.9b01296] [Reference Citation Analysis]
10 Wang Y, Tan X, Fan X, Zhao L, Wang S, He H, Yin T, Zhang Y, Tang X, Jian L, Jin J, Gou J. Current strategies for oral delivery of BCS IV drug nanocrystals: challenges, solutions and future trends. Expert Opin Drug Deliv 2021;18:1211-28. [PMID: 33719798 DOI: 10.1080/17425247.2021.1903428] [Reference Citation Analysis]
11 Lima AC, Alvarez-Lorenzo C, Mano JF. Design Advances in Particulate Systems for Biomedical Applications. Adv Healthc Mater 2016;5:1687-723. [PMID: 27332041 DOI: 10.1002/adhm.201600219] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
12 Salimi A, Sharif Makhmal Zadeh B, Kazemi M. Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: in vitro and ex vivo studies. Res Pharm Sci 2019;14:293-307. [PMID: 31516506 DOI: 10.4103/1735-5362.263554] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
13 Alqahtani MS, Islam MS, Podaralla S, Kaushik RS, Reineke J, Woyengo T, Perumal O. Food Protein Based Core–Shell Nanocarriers for Oral Drug Delivery: Effect of Shell Composition on in Vitro and in Vivo Functional Performance of Zein Nanocarriers. Mol Pharmaceutics 2017;14:757-69. [DOI: 10.1021/acs.molpharmaceut.6b01017] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
14 Alshehri S, Imam SS, Rizwanullah M, Fakhri KU, Rizvi MMA, Mahdi W, Kazi M. Effect of Chitosan Coating on PLGA Nanoparticles for Oral Delivery of Thymoquinone: In Vitro, Ex Vivo, and Cancer Cell Line Assessments. Coatings 2021;11:6. [DOI: 10.3390/coatings11010006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Lopes M, Simões S, Veiga F, Seiça R, Ribeiro A. Why most oral insulin formulations do not reach clinical trials. Ther Deliv 2015;6:973-87. [PMID: 26272222 DOI: 10.4155/TDE.15.47] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
16 Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in Oral Drug Delivery. Front Pharmacol 2021;12:618411. [PMID: 33679401 DOI: 10.3389/fphar.2021.618411] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
17 Sipos B, Csóka I, Ambrus R, Schelz Z, Zupkó I, Balogh GT, Katona G. Spray-dried indomethacin-loaded polymeric micelles for the improvement of intestinal drug release and permeability. European Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ejps.2022.106200] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Beg S, Kazmi I, Afzal O, Alfawaz Altamimi AS, Al-abbasi FA, Almalki WH, Alghamdi S, Alrobaian M, Alharbi KS, Alshammari MS, Panda SK, Aziz Ibrahim IA, Singh T, Rahman M. Implications of phospholipid-based nanomixed micelles of olmesartan medoxomil with enhanced lymphatic drug targeting ability and systemic bioavailability. Journal of Drug Delivery Science and Technology 2021;62:102273. [DOI: 10.1016/j.jddst.2020.102273] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Platnieks O, Gaidukovs S, Kumar Thakur V, Barkane A, Beluns S. Bio-based poly (butylene succinate): Recent progress, challenges and future opportunities. European Polymer Journal 2021;161:110855. [DOI: 10.1016/j.eurpolymj.2021.110855] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Cao X, Zhou X, Wang Y, Gong T, Zhang Z, Liu R, Fu Y. Diblock- and triblock-copolymer based mixed micelles with high tumor penetration in vitro and in vivo. J Mater Chem B 2016;4:3216-24. [DOI: 10.1039/c6tb00508j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
21 Sheth U, Nagane R, Bahadur P, Bahadur A. Salt effect on solubilization of hydrophobic drugs in block copolymeric micelles and investigation of their in vitro and in vivo oral efficiency. Journal of Drug Delivery Science and Technology 2017;39:531-41. [DOI: 10.1016/j.jddst.2017.05.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
22 Khoee S, Mousazadeh M, Bagheri Y. Effect of polyester/PEG mixed micelles composition on preparation of multicompartment nanoparticles: Influence of crystallinity on morphology. European Polymer Journal 2017;87:286-99. [DOI: 10.1016/j.eurpolymj.2016.12.028] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
23 Haque S, Cook K, Sahay G, Sun C. RNA-Based Therapeutics: Current Developments in Targeted Molecular Therapy of Triple-Negative Breast Cancer. Pharmaceutics 2021;13:1694. [PMID: 34683988 DOI: 10.3390/pharmaceutics13101694] [Reference Citation Analysis]
24 Fuentes I, Blanco-fernandez B, Alvarado N, Leiva Á, Radić D, Alvarez-lorenzo C, Concheiro A. Encapsulation of Antioxidant Gallate Derivatives in Biocompatible Poly(ε-caprolactone)- b -Pluronic- b -Poly(ε-caprolactone) Micelles. Langmuir 2016;32:3331-9. [DOI: 10.1021/acs.langmuir.5b04748] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
25 Vardaxi A, Kafetzi M, Pispas S. Polymeric Nanostructures Containing Proteins and Peptides for Pharmaceutical Applications. Polymers 2022;14:777. [DOI: 10.3390/polym14040777] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Almeida M, Magalhães M, Veiga F, Figueiras A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. J Polym Res 2018;25. [DOI: 10.1007/s10965-017-1426-x] [Cited by in Crossref: 50] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
27 Magalhães M, Almeida M, Tavares-da-Silva E, Roleira FMF, Varela C, Jorge J, Gonçalves AC, Carvalho RA, Veiga F, Santos AC, Figueiras A. miR-145-loaded micelleplexes as a novel therapeutic strategy to inhibit proliferation and migration of osteosarcoma cells. Eur J Pharm Sci 2018;123:28-42. [PMID: 30010029 DOI: 10.1016/j.ejps.2018.07.021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
28 Wang J, Ma W, Tu P. The mechanism of self-assembled mixed micelles in improving curcumin oral absorption: In vitro and in vivo. Colloids and Surfaces B: Biointerfaces 2015;133:108-19. [DOI: 10.1016/j.colsurfb.2015.05.056] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 7.7] [Reference Citation Analysis]
29 Durgun ME, Güngör S, Özsoy Y. Micelles: Promising Ocular Drug Carriers for Anterior and Posterior Segment Diseases. J Ocul Pharmacol Ther 2020;36:323-41. [PMID: 32310723 DOI: 10.1089/jop.2019.0109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
30 [DOI: 10.1117/12.2274018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
31 Wu ZL, Zhao J, Xu R. Recent Advances in Oral Nano-Antibiotics for Bacterial Infection Therapy. Int J Nanomedicine 2020;15:9587-610. [PMID: 33293809 DOI: 10.2147/IJN.S279652] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Magalhães M, Jorge J, Gonçalves AC, Sarmento-Ribeiro AB, Carvalho R, Figueiras A, Santos AC, Veiga F. miR-29b and retinoic acid co-delivery: a promising tool to induce a synergistic antitumoral effect in non-small cell lung cancer cells. Drug Deliv Transl Res 2020;10:1367-80. [PMID: 32358723 DOI: 10.1007/s13346-020-00768-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 De R, Mahata MK, Kim KT. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. Adv Sci (Weinh) 2022;9:e2105373. [PMID: 35112798 DOI: 10.1002/advs.202105373] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
34 Bayram NN, Topuzoğulları M, İşoğlu İA, Dinçer İşoğlu S. RAFT-synthesized POEGMA-b-P4VP block copolymers: preparation of nanosized micelles for anticancer drug release. Polym Bull . [DOI: 10.1007/s00289-021-03964-8] [Reference Citation Analysis]
35 Zoya I, He H, Wang L, Qi J, Lu Y, Wu W. The intragastrointestinal fate of paclitaxel-loaded micelles: Implications on oral drug delivery. Chinese Chemical Letters 2021;32:1545-9. [DOI: 10.1016/j.cclet.2020.09.038] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
36 Balusamy B, Celebioglu A, Senthamizhan A, Uyar T. Progress in the design and development of "fast-dissolving" electrospun nanofibers based drug delivery systems - A systematic review. J Control Release 2020;326:482-509. [PMID: 32721525 DOI: 10.1016/j.jconrel.2020.07.038] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
37 Guo C, Li M, Qi X, Lin G, Cui F, Li F, Wu X. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice. Sci Rep 2016;6:29753. [PMID: 27405815 DOI: 10.1038/srep29753] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
38 Sandez-macho I, Casas M, Lage EV, Rial-hermida MI, Concheiro A, Alvarez-lorenzo C. Interaction of poloxamine block copolymers with lipid membranes: Role of copolymer structure and membrane cholesterol content. Colloids and Surfaces B: Biointerfaces 2015;133:270-7. [DOI: 10.1016/j.colsurfb.2015.06.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
39 Bahadur A, Cabana-Montenegro S, Aswal VK, Lage EV, Sandez-Macho I, Concheiro A, Alvarez-Lorenzo C, Bahadur P. NaCl-triggered self-assembly of hydrophilic poloxamine block copolymers. Int J Pharm 2015;494:453-62. [PMID: 26315124 DOI: 10.1016/j.ijpharm.2015.08.058] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
40 Qu X, Zou Y, He C, Zhou Y, Jin Y, Deng Y, Wang Z, Li X, Zhou Y, Liu Y. Improved intestinal absorption of paclitaxel by mixed micelles self-assembled from vitamin E succinate-based amphiphilic polymers and their transcellular transport mechanism and intracellular trafficking routes. Drug Deliv 2018;25:210-25. [PMID: 29313392 DOI: 10.1080/10717544.2017.1419513] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
41 Hussein HA, Nazir MS, Azra N, Qamar Z, Seeni A, Tengku Din TADA, Abdullah MA. Novel Drug and Gene Delivery System and Imaging Agent Based on Marine Diatom Biosilica Nanoparticles. Marine Drugs 2022;20:480. [DOI: 10.3390/md20080480] [Reference Citation Analysis]
42 Tang C, Chen X, Yao H, Yin H, Ma X, Jin M, Lu X, Wang Q, Meng K, Yuan Q. Enhanced Oral Absorption of Icaritin by Using Mixed Polymeric Micelles Prepared with a Creative Acid-Base Shift Method. Molecules 2021;26:3450. [PMID: 34204150 DOI: 10.3390/molecules26113450] [Reference Citation Analysis]
43 Costa D, Santo D, Domingues C, Veiga F, Faneca H, Figueiras A. Recent advances in peptide-targeted micelleplexes: Current developments and future perspectives. Int J Pharm 2021;597:120362. [PMID: 33556489 DOI: 10.1016/j.ijpharm.2021.120362] [Reference Citation Analysis]
44 Domingues CSDC, Serambeque BP, Laranjo Cândido MS, Marto CMM, Veiga FJB, Sarmento Antunes Cruz Ribeiro AB, Figueiras ARR, Botelho MFR, Dourado MARF. Epithelial-mesenchymal transition and microRNAs: Challenges and future perspectives in oral cancer. Head Neck 2018;40:2304-13. [PMID: 30120853 DOI: 10.1002/hed.25381] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
45 Russo E, Villa C. Poloxamer Hydrogels for Biomedical Applications. Pharmaceutics 2019;11:E671. [PMID: 31835628 DOI: 10.3390/pharmaceutics11120671] [Cited by in Crossref: 62] [Cited by in F6Publishing: 49] [Article Influence: 20.7] [Reference Citation Analysis]
46 Azadi R, Mousavi SE, Kazemi NM, Yousefi-Manesh H, Rezayat SM, Jaafari MR. Anti-inflammatory efficacy of Berberine Nanomicelle for improvement of cerebral ischemia: formulation, characterization and evaluation in bilateral common carotid artery occlusion rat model. BMC Pharmacol Toxicol 2021;22:54. [PMID: 34600570 DOI: 10.1186/s40360-021-00525-7] [Reference Citation Analysis]
47 Ke Z, Shi J, Cheng Z, Cheng X, Wang H, Wang M, Wu J, Sun Y, Li C. Design and characterization of gambogic acid-loaded mixed micelles system for enhanced oral bioavailability. Pharm Dev Technol 2022;:1-24. [PMID: 35899462 DOI: 10.1080/10837450.2022.2107012] [Reference Citation Analysis]
48 Sreeharsha N, Philip M, Krishna SS, Viswanad V, Sahu RK, Shiroorkar PN, Aasif AH, Fattepur S, Asdaq SMB, Nair AB, Attimarad M, Venugopala KN. Multifunctional Mesoporous Silica Nanoparticles for Oral Drug Delivery. Coatings 2022;12:358. [DOI: 10.3390/coatings12030358] [Reference Citation Analysis]
49 Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021;13:1876. [PMID: 34834291 DOI: 10.3390/pharmaceutics13111876] [Reference Citation Analysis]
50 Yan X, Cao S, Li Y, Xiao P, Huang Z, Li H, Ma Y. Internalization and subcellular transport mechanisms of different curcumin loaded nanocarriers across Caco-2 cell model. Journal of Drug Delivery Science and Technology 2019;52:660-9. [DOI: 10.1016/j.jddst.2019.05.040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Lorenzo-Veiga B, Sigurdsson HH, Loftsson T, Alvarez-Lorenzo C. Cyclodextrin⁻Amphiphilic Copolymer Supramolecular Assemblies for the Ocular Delivery of Natamycin. Nanomaterials (Basel) 2019;9:E745. [PMID: 31096569 DOI: 10.3390/nano9050745] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
52 Ge Y, Zhao Y, Li L. Preparation of sodium cholate-based micelles through non-covalent ıbonding interaction and application as oral delivery systems for paclitaxel. Drug Delivery 2016;23:2555-65. [DOI: 10.3109/10717544.2015.1028604] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
53 Sharma M, Sharma R, Jain DK. Nanotechnology Based Approaches for Enhancing Oral Bioavailability of Poorly Water Soluble Antihypertensive Drugs. Scientifica (Cairo) 2016;2016:8525679. [PMID: 27239378 DOI: 10.1155/2016/8525679] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
54 Pantshwa JM, Kondiah PPD, Choonara YE, Marimuthu T, Pillay V. Nanodrug Delivery Systems for the Treatment of Ovarian Cancer. Cancers (Basel) 2020;12:E213. [PMID: 31952210 DOI: 10.3390/cancers12010213] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
55 Katekar R, Thombre G, Riyazuddin M, Husain A, Rani H, Praveena KS, Gayen JR. Pharmacokinetics and brain targeting of trans-resveratrol loaded mixed micelles in rats following intravenous administration. Pharm Dev Technol 2020;25:300-7. [PMID: 31609159 DOI: 10.1080/10837450.2019.1680690] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
56 Bhavsar C, Momin M, Gharat S, Omri A. Functionalized and graft copolymers of chitosan and its pharmaceutical applications. Expert Opinion on Drug Delivery 2017;14:1189-204. [DOI: 10.1080/17425247.2017.1241230] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
57 Sipos B, Katona G, Csóka I. A Systematic, Knowledge Space-Based Proposal on Quality by Design-Driven Polymeric Micelle Development. Pharmaceutics 2021;13:702. [PMID: 34065825 DOI: 10.3390/pharmaceutics13050702] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 He C, Jin Y, Deng Y, Zou Y, Han S, Zhou C, Zhou Y, Liu Y. Efficient Oral Delivery of Poorly Water-Soluble Drugs Using Carnitine/Organic Cation Transporter 2-Mediated Polymeric Micelles. ACS Biomater Sci Eng 2020;6:2146-58. [PMID: 33455346 DOI: 10.1021/acsbiomaterials.0c00020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
59 Domingues C, Alvarez-lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Mol Pharmaceutics 2019;16:4757-74. [DOI: 10.1021/acs.molpharmaceut.9b00945] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Chen T, Li Y, Li C, Yi X, Wang R, Lee SM, Zheng Y. Pluronic P85/F68 Micelles of Baicalein Could Interfere with Mitochondria to Overcome MRP2-Mediated Efflux and Offer Improved Anti-Parkinsonian Activity. Mol Pharmaceutics 2017;14:3331-42. [DOI: 10.1021/acs.molpharmaceut.7b00374] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
61 Simões SMN, Rey-rico A, Concheiro A, Alvarez-lorenzo C. Supramolecular cyclodextrin-based drug nanocarriers. Chem Commun 2015;51:6275-89. [DOI: 10.1039/c4cc10388b] [Cited by in Crossref: 111] [Cited by in F6Publishing: 21] [Article Influence: 15.9] [Reference Citation Analysis]