BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Aly AE, Waszczak BL. Intranasal gene delivery for treating Parkinson's disease: overcoming the blood-brain barrier. Expert Opin Drug Deliv 2015;12:1923-41. [PMID: 26289676 DOI: 10.1517/17425247.2015.1069815] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Schutt C, Gendelman HE, Mosley RL. Immunotherapies for Movement Disorders: Parkinson’s Disease and Amyotrophic Lateral Sclerosis. In: Ikezu T, Gendelman HE, editors. Neuroimmune Pharmacology. Cham: Springer International Publishing; 2017. pp. 767-97. [DOI: 10.1007/978-3-319-44022-4_46] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
2 Foldvari M, Chen DW. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy. Neural Regen Res 2016;11:875-7. [PMID: 27482199 DOI: 10.4103/1673-5374.184448] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Alsharif I, Boukhzar L, Lefranc B, Godefroy D, Aury-Landas J, Rego JD, Rego JD, Naudet F, Arabo A, Chagraoui A, Maltête D, Benazzouz A, Baugé C, Leprince J, Elkahloun AG, Eiden LE, Anouar Y. Cell-penetrating, antioxidant SELENOT mimetic protects dopaminergic neurons and ameliorates motor dysfunction in Parkinson's disease animal models. Redox Biol 2021;40:101839. [PMID: 33486153 DOI: 10.1016/j.redox.2020.101839] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 Bertrand L, Nair M, Toborek M. Solving the Blood-Brain Barrier Challenge for the Effective Treatment of HIV Replication in the Central Nervous System. Curr Pharm Des 2016;22:5477-86. [PMID: 27464720 DOI: 10.2174/1381612822666160726113001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
5 Kambey PA, Kanwore K, Ayanlaja AA, Nadeem I, Du Y, Buberwa W, Liu W, Gao D. Failure of Glial Cell-Line Derived Neurotrophic Factor (GDNF) in Clinical Trials Orchestrated By Reduced NR4A2 (NURR1) Transcription Factor in Parkinson's Disease. A Systematic Review. Front Aging Neurosci 2021;13:645583. [PMID: 33716718 DOI: 10.3389/fnagi.2021.645583] [Reference Citation Analysis]
6 Chen TC, Da Fonseca CO, Schönthal AH. Perillyl Alcohol and Its Drug-Conjugated Derivatives as Potential Novel Methods of Treating Brain Metastases. Int J Mol Sci 2016;17:E1463. [PMID: 27598140 DOI: 10.3390/ijms17091463] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
7 Elsworth JD. Parkinson's disease treatment: past, present, and future. J Neural Transm (Vienna) 2020;127:785-91. [PMID: 32172471 DOI: 10.1007/s00702-020-02167-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
8 Lee MR, Jayant RD. Penetration of the blood-brain barrier by peripheral neuropeptides: new approaches to enhancing transport and endogenous expression. Cell Tissue Res 2019;375:287-93. [PMID: 30535799 DOI: 10.1007/s00441-018-2959-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
9 Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco-Prieto MJ. Micro- and nanotechnology approaches to improve Parkinson's disease therapy. J Control Release 2019;295:201-13. [PMID: 30579984 DOI: 10.1016/j.jconrel.2018.12.036] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
10 Ma J, Wang C, Sun Y, Pang L, Zhu S, Liu Y, Zhu L, Zhang S, Wang L, Du L. Comparative study of oral and intranasal puerarin for prevention of brain injury induced by acute high-altitude hypoxia. Int J Pharm 2020;591:120002. [PMID: 33141084 DOI: 10.1016/j.ijpharm.2020.120002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Khosa A, Saha RN, Singhvi G. Drug delivery to the brain. Nanomaterials for Drug Delivery and Therapy. Elsevier; 2019. pp. 461-514. [DOI: 10.1016/b978-0-12-816505-8.00005-9] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
12 Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2021;9:1065-87. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Sola P, Krishnamurthy P, Chintamaneni PK, Pindiprolu SKS, Kumari M. Novel drug delivery systems of β2 adrenoreceptor agonists to suppress SNCA gene expression and mitochondrial oxidative stress in Parkinson’s disease management. Expert Opinion on Drug Delivery 2020;17:1119-32. [DOI: 10.1080/17425247.2020.1779218] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
14 Rodriguez‐otormin F, Duro‐castano A, Conejos‐sánchez I, Vicent MJ. Envisioning the future of polymer therapeutics for brain disorders. WIREs Nanomed Nanobiotechnol 2019;11. [DOI: 10.1002/wnan.1532] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
15 Fajardo-Serrano A, Rico AJ, Roda E, Honrubia A, Arrieta S, Ariznabarreta G, Chocarro J, Lorenzo-Ramos E, Pejenaute A, Vázquez A, Lanciego JL. Adeno-Associated Viral Vectors as Versatile Tools for Parkinson's Research, Both for Disease Modeling Purposes and for Therapeutic Uses. Int J Mol Sci 2021;22:6389. [PMID: 34203739 DOI: 10.3390/ijms22126389] [Reference Citation Analysis]
16 Goswami P, Joshi N, Singh S. Neurodegenerative signaling factors and mechanisms in Parkinson's pathology. Toxicol In Vitro 2017;43:104-12. [PMID: 28627426 DOI: 10.1016/j.tiv.2017.06.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
17 Kimura S, Harashima H. Current Status and Challenges Associated with CNS-Targeted Gene Delivery across the BBB. Pharmaceutics 2020;12:E1216. [PMID: 33334049 DOI: 10.3390/pharmaceutics12121216] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Stanisçuaski Guterres S, Raffin Pohlmann A, Nicoli S. Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics 2018;10:E34. [PMID: 29543755 DOI: 10.3390/pharmaceutics10010034] [Cited by in Crossref: 106] [Cited by in F6Publishing: 89] [Article Influence: 26.5] [Reference Citation Analysis]
19 Pandey PK, Sharma AK, Gupta U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 2016;4:e1129476. [PMID: 27141418 DOI: 10.1080/21688370.2015.1129476] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 7.4] [Reference Citation Analysis]
20 Jarrin S, Hakami A, Newland B, Dowd E. Growth Factor Therapy for Parkinson's Disease: Alternative Delivery Systems. J Parkinsons Dis 2021. [PMID: 33896851 DOI: 10.3233/JPD-212662] [Reference Citation Analysis]
21 Dubey SK, Lakshmi KK, Krishna KV, Agrawal M, Singhvi G, Saha RN, Saraf S, Saraf S, Shukla R, Alexander A. Insulin mediated novel therapies for the treatment of Alzheimer's disease. Life Sci 2020;249:117540. [PMID: 32165212 DOI: 10.1016/j.lfs.2020.117540] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
22 Bondarenko O, Saarma M. Neurotrophic Factors in Parkinson's Disease: Clinical Trials, Open Challenges and Nanoparticle-Mediated Delivery to the Brain. Front Cell Neurosci 2021;15:682597. [PMID: 34149364 DOI: 10.3389/fncel.2021.682597] [Reference Citation Analysis]