BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shcharbin D, Shakhbazau A, Bryszewska M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin Drug Deliv 2013;10:1687-98. [PMID: 24168461 DOI: 10.1517/17425247.2013.853661] [Cited by in Crossref: 74] [Cited by in F6Publishing: 67] [Article Influence: 8.2] [Reference Citation Analysis]
Number Citing Articles
1 Ueda M, Jo JI, Gao JQ, Tabata Y. Effect of lipopolysaccharide addition on the gene transfection of spermine-introduced pullulan-plasmid DNA complexes for human mesenchymal stem cells. J Biomater Sci Polym Ed 2019;30:1542-58. [PMID: 31354063 DOI: 10.1080/09205063.2019.1650240] [Reference Citation Analysis]
2 Gheybi H, Sattari S, Soleimani K, Adeli M. Graphene-dendritic polymer hybrids: synthesis, properties, and applications. J IRAN CHEM SOC 2020;17:735-64. [DOI: 10.1007/s13738-019-01817-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Sahiner N. One step synthesis of an amino acid derived particles, poly( L‐Arginine ) and its biomedical application. Polymers for Advanced Techs 2022;33:831-42. [DOI: 10.1002/pat.5559] [Reference Citation Analysis]
4 Shcharbin D, Bryszewska M, Mignani S, Shi X, Majoral JP. Phosphorus dendrimers as powerful nanoplatforms for drug delivery, as fluorescent probes and for liposome interaction studies: A concise overview. Eur J Med Chem 2020;208:112788. [PMID: 32883637 DOI: 10.1016/j.ejmech.2020.112788] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Dai X, Tan C. Combination of microRNA therapeutics with small-molecule anticancer drugs: mechanism of action and co-delivery nanocarriers. Adv Drug Deliv Rev 2015;81:184-97. [PMID: 25281917 DOI: 10.1016/j.addr.2014.09.010] [Cited by in Crossref: 89] [Cited by in F6Publishing: 88] [Article Influence: 11.1] [Reference Citation Analysis]
6 Ghosh N, Katare R. Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovasc Diabetol 2018;17:43. [PMID: 29566757 DOI: 10.1186/s12933-018-0684-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
7 Garbuzenko OB, Winkler J, Tomassone MS, Minko T. Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs. Langmuir 2014;30:12941-9. [PMID: 25300552 DOI: 10.1021/la502144z] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 7.1] [Reference Citation Analysis]
8 Mekuria SL, Li J, Song C, Gao Y, Ouyang Z, Shen M, Shi X. Facile Formation of PAMAM Dendrimer Nanoclusters for Enhanced Gene Delivery and Cancer Gene Therapy. ACS Appl Bio Mater 2021;4:7168-75. [PMID: 35006948 DOI: 10.1021/acsabm.1c00743] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Oki AT, Seidman D, Lancina MG 3rd, Mishra MK, Kannan RM, Yang H, Carlyon JA. Dendrimer-enabled transformation of Anaplasma phagocytophilum. Microbes Infect 2015;17:817-22. [PMID: 26369714 DOI: 10.1016/j.micinf.2015.09.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
10 Akhtar S, Al-Zaid B, El-Hashim AZ, Chandrasekhar B, Attur S, Benter IF. Impact of PAMAM delivery systems on signal transduction pathways in vivo: Modulation of ERK1/2 and p38 MAP kinase signaling in the normal and diabetic kidney. Int J Pharm 2016;514:353-63. [PMID: 27032566 DOI: 10.1016/j.ijpharm.2016.03.039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
11 Marson D, Laurini E, Posocco P, Fermeglia M, Pricl S. Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair. Nanoscale 2015;7:3876-87. [PMID: 25340619 DOI: 10.1039/c4nr04510f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
12 Deriu MA, Tsapis N, Noiray M, Grasso G, El Brahmi N, Mignani S, Majoral J, Fattal E, Danani A. Elucidating the role of surface chemistry on cationic phosphorus dendrimer–siRNA complexation. Nanoscale 2018;10:10952-62. [DOI: 10.1039/c8nr01928b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
13 Zhu K, Lai H, Guo C, Li J, Wang Y, Wang L, Wang C. Nanovector-based prolyl hydroxylase domain 2 silencing system enhances the efficiency of stem cell transplantation for infarcted myocardium repair. Int J Nanomedicine 2014;9:5203-15. [PMID: 25429216 DOI: 10.2147/IJN.S71586] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
14 Lam JK, Chow MY, Zhang Y, Leung SW. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids 2015;4:e252. [PMID: 26372022 DOI: 10.1038/mtna.2015.23] [Cited by in Crossref: 368] [Cited by in F6Publishing: 350] [Article Influence: 52.6] [Reference Citation Analysis]
15 Lin Q, Yang Y, Hu Q, Guo Z, Liu T, Xu J, Wu J, Kirk TB, Ma D, Xue W. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery. Acta Biomater 2017;49:456-71. [PMID: 27915016 DOI: 10.1016/j.actbio.2016.11.062] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 8.3] [Reference Citation Analysis]
16 Liu Y, Pang Y, Toh MR, Chiu GN. Dual-functionalized poly(amidoamine) dendrimers with poly(ethylene glycol) conjugation and thiolation improved blood compatibility. J Pharm Pharmacol 2015;67:1492-502. [PMID: 26303576 DOI: 10.1111/jphp.12457] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
17 Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, Weijie H, Yang EKS, Keat CG, Bhattamishra SK, Kesharwani P, Md S, Molugulu N, Pichika MR, Gorain B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. Mater Sci Eng C Mater Biol Appl 2019;101:596-613. [PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 12.3] [Reference Citation Analysis]
18 Uram Ł, Szuster M, Filipowicz A, Gargasz K, Wołowiec S, Wałajtys-Rode E. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin-pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro. Int J Nanomedicine 2015;10:5647-61. [PMID: 26379435 DOI: 10.2147/IJN.S87307] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Duo X, Bai L, Wang J, Ji H, Guo J, Ren X, Shi C, Xia S, Zhang W, Feng Y. CAGW and TAT‐NLS peptides functionalized multitargeting gene delivery system with high transfection efficiency. Polym Adv Technol 2019;30:2567-76. [DOI: 10.1002/pat.4686] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Askarian S, Abnous K, Darroudi M, Oskuee RK, Ramezani M. Gene delivery to neuroblastoma cells by poly (l-lysine)-grafted low molecular weight polyethylenimine copolymers. Biologicals 2016;44:212-8. [DOI: 10.1016/j.biologicals.2016.03.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
21 Azimifar MA, Salmasi Z, Doosti A, Babaei N, Hashemi M. Evaluation of the efficiency of modified PAMAM dendrimer with low molecular weight protamine peptide to deliver IL-12 plasmid into stem cells as cancer therapy vehicles. Biotechnol Prog 2021;37:e3175. [PMID: 34013634 DOI: 10.1002/btpr.3175] [Reference Citation Analysis]
22 Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. Int J Pharm 2017;525:293-312. [PMID: 28163221 DOI: 10.1016/j.ijpharm.2017.01.056] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
23 Xiao C, Wang F, Hou J, Zhu X, Luo Y, Xiong JW. Nanoparticle-mediated siRNA Gene-silencing in Adult Zebrafish Heart. J Vis Exp 2018. [PMID: 30102293 DOI: 10.3791/58054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Lee YS, Choi JW, Oh JE, Yun CO, Kim SW. Human relaxin gene expression delivered by bioreducible dendrimer polymer for post-infarct cardiac remodeling in rats. Biomaterials 2016;97:164-75. [PMID: 27174688 DOI: 10.1016/j.biomaterials.2016.04.025] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
25 Akhtar S, El-hashim AZ, Chandrasekhar B, Attur S, Benter IF. Naked Polyamidoamine Polymers Intrinsically Inhibit Angiotensin II-Mediated EGFR and ErbB2 Transactivation in a Dendrimer Generation- and Surface Chemistry-Dependent Manner. Mol Pharmaceutics 2016;13:1575-86. [DOI: 10.1021/acs.molpharmaceut.6b00045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
26 Weidle UH, Birzele F, Nopora A. microRNAs Promoting Growth of Gastric Cancer Xenografts and Correlation to Clinical Prognosis. Cancer Genomics Proteomics 2021;18:1-15. [PMID: 33419892 DOI: 10.21873/cgp.20237] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Wilde M, Green RJ, Sanders MR, Greco F. Biophysical studies in polymer therapeutics: the interactions of anionic and cationic PAMAM dendrimers with lipid monolayers. Journal of Drug Targeting 2017;25:910-8. [DOI: 10.1080/1061186x.2017.1365877] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
28 Zhou Z, Ma X, Murphy CJ, Jin E, Sun Q, Shen Y, Van kirk EA, Murdoch WJ. Molecularly Precise Dendrimer-Drug Conjugates with Tunable Drug Release for Cancer Therapy. Angew Chem 2014;126:11129-35. [DOI: 10.1002/ange.201406442] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
29 Jiang L, Zhou S, Zhang X, Wu W, Jiang X. Dendrimer-based nanoparticles in cancer chemotherapy and gene therapy. Sci China Mater 2018;61:1404-19. [DOI: 10.1007/s40843-018-9242-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
30 Dzmitruk V, Apartsin E, Ihnatsyeu-Kachan A, Abashkin V, Shcharbin D, Bryszewska M. Dendrimers Show Promise for siRNA and microRNA Therapeutics. Pharmaceutics 2018;10:E126. [PMID: 30096839 DOI: 10.3390/pharmaceutics10030126] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 9.5] [Reference Citation Analysis]
31 Zhao Y, Zeng Q, Wu F, Li J, Pan Z, Shen P, Yang L, Xu T, Cai L, Guo L. Novel naproxen-peptide-conjugated amphiphilic dendrimer self-assembly micelles for targeting drug delivery to osteosarcoma cells. RSC Adv 2016;6:60327-35. [DOI: 10.1039/c6ra15022e] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
32 Akhtar S, Al-Zaid B, El-Hashim AZ, Chandrasekhar B, Attur S, Yousif MH, Benter IF. Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo. PLoS One 2015;10:e0132215. [PMID: 26167903 DOI: 10.1371/journal.pone.0132215] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
33 Kharwade R, More S, Mahajan N, Agrawal P. Functionalised Dendrimers: Potential Tool for Antiretroviral Therapy. CNANO 2020;16:708-22. [DOI: 10.2174/1573413716666200213114836] [Reference Citation Analysis]
34 Chen M, Tang Y, Wang T, Long Q, Zeng Z, Chen H, Feng X. Enhanced gene delivery of low molecular weight PEI by flower-like ZnO microparticles. Materials Science and Engineering: C 2016;69:1367-72. [DOI: 10.1016/j.msec.2016.06.095] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
35 Zhang T, Lin R, Wu H, Jiang X, Gao J. Mesenchymal stem cells: a living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022;:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Reference Citation Analysis]
36 Tai L, Liu C, Jiang K, Chen X, Feng L, Pan W, Wei G, Lu W. A novel penetratin-modified complex for noninvasive intraocular delivery of antisense oligonucleotides. Int J Pharm 2017;529:347-56. [PMID: 28673859 DOI: 10.1016/j.ijpharm.2017.06.090] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
37 Liu X, Yang Z, Sun J, Ma T, Hua F, Shen Z. A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int J Nanomedicine 2019;14:3875-92. [PMID: 31213807 DOI: 10.2147/IJN.S205574] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 4.7] [Reference Citation Analysis]
38 Shcharbin D, Shcharbina N, Shakhbazau A, Mignani S, Majoral J, Bryszewska M. Phosphorus-containing nanoparticles: biomedical patents review. Expert Opinion on Therapeutic Patents 2015;25:539-48. [DOI: 10.1517/13543776.2015.1010512] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
39 Shcharbin D, Janaszewska A, Klajnert-maculewicz B, Ziemba B, Dzmitruk V, Halets I, Loznikova S, Shcharbina N, Milowska K, Ionov M, Shakhbazau A, Bryszewska M. How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. Journal of Controlled Release 2014;181:40-52. [DOI: 10.1016/j.jconrel.2014.02.021] [Cited by in Crossref: 68] [Cited by in F6Publishing: 61] [Article Influence: 8.5] [Reference Citation Analysis]
40 Li J, Liu J, Guo N, Zhang X. Reversal of multidrug resistance in breast cancer MCF-7/ADR cells by h-R3-siMDR1-PAMAM complexes. Int J Pharm 2016;511:436-45. [PMID: 27444552 DOI: 10.1016/j.ijpharm.2016.07.039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
41 Ming X, Wu L, Carver K, Yuan A, Min Y. Dendritic nanoconjugates for intracellular delivery of neutral oligonucleotides. Nanoscale 2015;7:12302-6. [PMID: 26134311 DOI: 10.1039/c5nr01665g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
42 Ramezanpour M, Leung SS, Delgado-Magnero KH, Bashe BY, Thewalt J, Tieleman DP. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim Biophys Acta 2016;1858:1688-709. [PMID: 26930298 DOI: 10.1016/j.bbamem.2016.02.028] [Cited by in Crossref: 84] [Cited by in F6Publishing: 68] [Article Influence: 14.0] [Reference Citation Analysis]
43 Zhao XY, Voutila J, Habib NA, Reebye V. RNA Activation. In: Nakao K, Minato N, Uemoto S, editors. Innovative Medicine. Tokyo: Springer Japan; 2015. pp. 241-9. [DOI: 10.1007/978-4-431-55651-0_20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
44 Zhou Z, Ma X, Murphy CJ, Jin E, Sun Q, Shen Y, Van kirk EA, Murdoch WJ. Molecularly Precise Dendrimer-Drug Conjugates with Tunable Drug Release for Cancer Therapy. Angew Chem Int Ed 2014;53:10949-55. [DOI: 10.1002/anie.201406442] [Cited by in Crossref: 73] [Cited by in F6Publishing: 65] [Article Influence: 9.1] [Reference Citation Analysis]
45 Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J Mater Chem B 2021;9:1208-37. [PMID: 33393582 DOI: 10.1039/d0tb02168g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
46 Li Q, Gu W, Liu K, Xiao N, Zhang J, Shao L, Li L, Zhang S, Li P. RGD conjugated, Cy5.5 labeled polyamidoamine dendrimers for targeted near-infrared fluorescence imaging of esophageal squamous cell carcinoma. RSC Adv 2016;6:74560-6. [DOI: 10.1039/c6ra12927g] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
47 García-Gallego S, Franci G, Falanga A, Gómez R, Folliero V, Galdiero S, de la Mata FJ, Galdiero M. Function Oriented Molecular Design: Dendrimers as Novel Antimicrobials. Molecules 2017;22:E1581. [PMID: 28934169 DOI: 10.3390/molecules22101581] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
48 Pishavar E, Oroojalian F, Salmasi Z, Hashemi E, Hashemi M. Recent advances of dendrimer in targeted delivery of drugs and genes to stem cells as cellular vehicles. Biotechnol Prog 2021;37:e3174. [PMID: 33987965 DOI: 10.1002/btpr.3174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Patle RY, Meshram JS. The advanced synthetic modifications and applications of multifunctional PAMAM dendritic composites. React Chem Eng 2021;7:9-40. [DOI: 10.1039/d1re00074h] [Reference Citation Analysis]
50 Wu D, Yang J, Xing Z, Han H, Wang T, Zhang A, Yang Y, Li Q. Phenylboronic acid-functionalized polyamidoamine-mediated Bcl-2 siRNA delivery for inhibiting the cell proliferation. Colloids Surf B Biointerfaces 2016;146:318-25. [PMID: 27371891 DOI: 10.1016/j.colsurfb.2016.06.034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
51 Gebert M, Jaśkiewicz M, Moszyńska A, Collawn JF, Bartoszewski R. The Effects of Single Nucleotide Polymorphisms in Cancer RNAi Therapies. Cancers (Basel) 2020;12:E3119. [PMID: 33113880 DOI: 10.3390/cancers12113119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Li J, Liu J, Li S, Hao Y, Chen L, Zhang X. Antibody h-R3-dendrimer mediated siRNA has excellent endosomal escape and tumor targeted delivery ability, and represents efficient siPLK1 silencing and inhibition of cell proliferation, migration and invasion. Oncotarget 2016;7:13782-96. [PMID: 26883109 DOI: 10.18632/oncotarget.7368] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
53 Xie Z, Guo W, Guo N, Huangfu M, Liu H, Lin M, Xu W, Chen J, Wang T, Wei Q, Han M, Gao J. Targeting tumor hypoxia with stimulus-responsive nanocarriers in overcoming drug resistance and monitoring anticancer efficacy. Acta Biomater 2018;71:351-62. [PMID: 29545193 DOI: 10.1016/j.actbio.2018.03.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
54 Li CY, Wang HJ, Cao JM, Zhang J, Yu XQ. Bioreducible cross-linked polymers based on G1 peptide dendrimer as potential gene delivery vectors. Eur J Med Chem 2014;87:413-20. [PMID: 25282264 DOI: 10.1016/j.ejmech.2014.09.091] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
55 Shrestha I, Choi JS, Bae YU, Doh KO. Enhancement of Liposomal Plasmid DNA and siRNA Delivery by Itraconazole through Intracellular Cholesterol Accumulation. Pharm Res 2020;37:126. [PMID: 32529417 DOI: 10.1007/s11095-020-02846-4] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Accomasso L, Gallina C, Turinetto V, Giachino C. Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview. Stem Cells Int 2016;2016:7920358. [PMID: 26839568 DOI: 10.1155/2016/7920358] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 6.1] [Reference Citation Analysis]
57 Wang X, Cao J, Yu Y, Ma B, Gao C, Lu J, Lin Y, Li P, Qi F. Role of MicroRNA 146a in Regulating Regulatory T Cell Function to Ameliorate Acute Cardiac Rejection in Mice. Transplantation Proceedings 2019;51:901-12. [DOI: 10.1016/j.transproceed.2019.01.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
58 Pedziwiatr-werbicka E, Milowska K, Dzmitruk V, Ionov M, Shcharbin D, Bryszewska M. Dendrimers and hyperbranched structures for biomedical applications. European Polymer Journal 2019;119:61-73. [DOI: 10.1016/j.eurpolymj.2019.07.013] [Cited by in Crossref: 47] [Cited by in F6Publishing: 17] [Article Influence: 15.7] [Reference Citation Analysis]
59 Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention. Cancer Biol Med 2014;11:44-55. [PMID: 24738038 DOI: 10.7497/j.issn.2095-3941.2014.01.004] [Cited by in F6Publishing: 30] [Reference Citation Analysis]
60 Li T, Chen Q, Zheng Y, Zhang P, Chen X, Lu J, Lv Y, Sun S, Zeng W. PAMAM-cRGD mediating efficient siRNA delivery to spermatogonial stem cells. Stem Cell Res Ther 2019;10:399. [PMID: 31852526 DOI: 10.1186/s13287-019-1506-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
61 Shakhbazau A, Mishra M, Chu T, Brideau C, Cummins K, Tsutsui S, Shcharbin D, Majoral J, Mignani S, Blanchard-desce M, Bryszewska M, Yong VW, Stys PK, van Minnen J. Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury: Fluorescent Phosphorus Dendrimer as a Macrophage Tracer. Macromol Biosci 2015;15:1523-34. [DOI: 10.1002/mabi.201500150] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
62 Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015;115:5274-300. [DOI: 10.1021/cr500542t] [Cited by in Crossref: 264] [Cited by in F6Publishing: 224] [Article Influence: 37.7] [Reference Citation Analysis]
63 Chen M, Zeng Z, Qu X, Tang Y, Long Q, Feng X. Biocompatible anionic polyelectrolyte for improved liposome based gene transfection. International Journal of Pharmaceutics 2015;490:173-9. [DOI: 10.1016/j.ijpharm.2015.05.046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
64 Kumari R, Sunil D, Ningthoujam RS. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. J Control Release 2020;319:135-56. [PMID: 31881315 DOI: 10.1016/j.jconrel.2019.12.041] [Cited by in Crossref: 54] [Cited by in F6Publishing: 45] [Article Influence: 18.0] [Reference Citation Analysis]
65 Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019;24:69. [PMID: 31867046 DOI: 10.1186/s11658-019-0196-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
66 Shcharbin D, Halets-bui I, Abashkin V, Dzmitruk V, Loznikova S, Odabaşı M, Acet Ö, Önal B, Özdemir N, Shcharbina N, Bryszewska M. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids and Surfaces B: Biointerfaces 2019;182:110354. [DOI: 10.1016/j.colsurfb.2019.110354] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 6.3] [Reference Citation Analysis]
67 Serchenya T, Shcharbin D, Shyrochyna I, Sviridov O, Terekhova M, Dzmitruk V, Abashkin V, Apartsin E, Mignani S, Majoral J, Ionov M, Bryszewska M. Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimers. Colloids and Surfaces B: Biointerfaces 2019;179:226-32. [DOI: 10.1016/j.colsurfb.2019.03.065] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
68 Sun Y, Jiao Y, Wang Y, Lu D, Yang W. The strategy to improve gene transfection efficiency and biocompatibility of hyperbranched PAMAM with the cooperation of PEGylated hyperbranched PAMAM. Int J Pharm 2014;465:112-9. [PMID: 24530382 DOI: 10.1016/j.ijpharm.2014.02.018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
69 Kaestner L, Scholz A, Lipp P. Conceptual and technical aspects of transfection and gene delivery. Bioorganic & Medicinal Chemistry Letters 2015;25:1171-6. [DOI: 10.1016/j.bmcl.2015.01.018] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 6.4] [Reference Citation Analysis]
70 Khan FA, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev 2021. [PMID: 33891325 DOI: 10.1002/med.21809] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
71 Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016;44:6518-48. [PMID: 27084936 DOI: 10.1093/nar/gkw236] [Cited by in Crossref: 432] [Cited by in F6Publishing: 410] [Article Influence: 72.0] [Reference Citation Analysis]
72 Zhu K, Li J, Lai H, Yang C, Guo C, Wang C. Reprogramming fibroblasts to pluripotency using arginine-terminated polyamidoamine nanoparticles based non-viral gene delivery system. Int J Nanomedicine. 2014;9:5837-5847. [PMID: 25540584 DOI: 10.2147/ijn.s73961] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
73 Li J, Liang H, Liu J, Wang Z. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm 2018;546:215-25. [PMID: 29787895 DOI: 10.1016/j.ijpharm.2018.05.045] [Cited by in Crossref: 106] [Cited by in F6Publishing: 108] [Article Influence: 26.5] [Reference Citation Analysis]
74 Tarach P, Janaszewska A. Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. Int J Mol Sci 2021;22:2912. [PMID: 33805602 DOI: 10.3390/ijms22062912] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
75 Xu D, Su Y, Xu Q, Huang T, Chen Z, Zhang T. Uniform iron oxide nanoparticles reduce the required amount of polyethylenimine in the gene delivery to mesenchymal stem cells. Nanotechnology 2021;33. [PMID: 34874301 DOI: 10.1088/1361-6528/ac4066] [Reference Citation Analysis]