BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer's patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv 2004;1:141-63. [PMID: 16296726 DOI: 10.1517/17425247.1.1.141] [Cited by in Crossref: 107] [Cited by in F6Publishing: 92] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Pandya P, Giram P, Bhole RP, Chang H, Raut SY. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. Journal of Drug Delivery Science and Technology 2021;64:102585. [DOI: 10.1016/j.jddst.2021.102585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Kumar KP, Paul W, Sharma CP. Green Synthesis of Silver Nanoparticles with Zingiber officinale Extract and Study of its Blood Compatibility. BioNanoSci 2012;2:144-52. [DOI: 10.1007/s12668-012-0044-7] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
3 Qi J, Zhuang J, Lv Y, Lu Y, Wu W. Exploiting or overcoming the dome trap for enhanced oral immunization and drug delivery. Journal of Controlled Release 2018;275:92-106. [DOI: 10.1016/j.jconrel.2018.02.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
4 Shi G, Liu Y, He Z, Zhou J. Chemical treatment and chitosan coating of yeast cells to improve the encapsulation and controlled release of bovine serum albumin. Artif Cells Nanomed Biotechnol 2017;45:1-9. [PMID: 27684360 DOI: 10.1080/21691401.2016.1216855] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
5 Sotres J, Jankovskaja S, Wannerberger K, Arnebrant T. Ex-Vivo Force Spectroscopy of Intestinal Mucosa Reveals the Mechanical Properties of Mucus Blankets. Sci Rep 2017;7:7270. [PMID: 28779181 DOI: 10.1038/s41598-017-07552-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
6 Ganugula R, Arora M, Zou D, Agarwal SK, Mohan C, Kumar MNVR. A highly potent lymphatic system-targeting nanoparticle cyclosporine prevents glomerulonephritis in mouse model of lupus. Sci Adv 2020;6:eabb3900. [PMID: 32582860 DOI: 10.1126/sciadv.abb3900] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
7 Al-rubaee SH, Al-azawi TS, Taha AA. Duodenal Histomorphological Changes in Broilers Administered poly d, l-lactic-coglycolic acid (PLGA ) Nanoparticles Encapsulated with Peptide. Iraqi J Vet Med 2020;44:80-8. [DOI: 10.30539/ijvm.v44i1.945] [Reference Citation Analysis]
8 Lo DD. Mucosal vaccine delivery: is M cell-targeted delivery effective in the mucosal lumen? Expert Opin Drug Deliv 2013;10:157-61. [PMID: 23252467 DOI: 10.1517/17425247.2013.740008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
9 Karimi Bavandpour A, Bakhshi B, Najar-Peerayeh S. The roles of mesoporous silica and carbon nanoparticles in antigen stability and intensity of immune response against recombinant subunit B of cholera toxin in a rabbit animal model. Int J Pharm 2020;573:118868. [PMID: 31765785 DOI: 10.1016/j.ijpharm.2019.118868] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
10 Schubert R. Entwicklung oraler und parenteraler Arzneiformen: Bioverfügbarkeit und Stabilität von Immunsuppressiva. Pharmazie in unserer Zeit 2005;34:296-303. [DOI: 10.1002/pauz.200500129] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
11 Wang T, Zou M, Jiang H, Ji Z, Gao P, Cheng G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur J Pharm Sci 2011;44:653-9. [PMID: 22064451 DOI: 10.1016/j.ejps.2011.10.012] [Cited by in Crossref: 56] [Cited by in F6Publishing: 47] [Article Influence: 5.1] [Reference Citation Analysis]
12 Sahu KK, Minz S, Kaurav M, Pandey RS. Proteins and peptides: The need to improve them as promising therapeutics for ulcerative colitis. Artif Cells Nanomed Biotechnol 2016;44:642-53. [PMID: 25379956 DOI: 10.3109/21691401.2014.975239] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1-27. [PMID: 17050027 DOI: 10.1016/j.jconrel.2006.08.013] [Cited by in Crossref: 838] [Cited by in F6Publishing: 712] [Article Influence: 52.4] [Reference Citation Analysis]
14 Mutwiri G, Bowersock TL, Babiuk LA. Microparticles for oral delivery of vaccines. Expert Opinion on Drug Delivery 2005;2:791-806. [DOI: 10.1517/17425247.2.5.791] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
15 Managuli RS, Raut SY, Reddy MS, Mutalik S. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv 2018;15:787-804. [PMID: 30025212 DOI: 10.1080/17425247.2018.1503249] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
16 Victor SP, Sharma CP. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles. Colloids and Surfaces B: Biointerfaces 2013;108:219-28. [DOI: 10.1016/j.colsurfb.2013.02.025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
17 Kumar KP, Paul W, Sharma CP. Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility. Process Biochemistry 2011;46:2007-13. [DOI: 10.1016/j.procbio.2011.07.011] [Cited by in Crossref: 195] [Cited by in F6Publishing: 115] [Article Influence: 17.7] [Reference Citation Analysis]
18 Diego-González L, Crecente-Campo J, Paul MJ, Singh M, Reljic R, Alonso MJ, González-Fernández Á, Simón-Vázquez R. Design of Polymeric Nanocapsules for Intranasal Vaccination against Mycobacterium Tuberculosis: Influence of the Polymeric Shell and Antigen Positioning. Pharmaceutics 2020;12:E489. [PMID: 32481601 DOI: 10.3390/pharmaceutics12060489] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
19 Rajapaksa TE, Bennett KM, Hamer M, Lytle C, Rodgers VG, Lo DD. Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J Biol Chem 2010;285:23739-46. [PMID: 20511224 DOI: 10.1074/jbc.M110.126359] [Cited by in Crossref: 40] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
20 Fontana MC, Beckenkamp A, Buffon A, Beck RC. Controlled release of raloxifene by nanoencapsulation: effect on in vitro antiproliferative activity of human breast cancer cells. Int J Nanomedicine 2014;9:2979-91. [PMID: 24971009 DOI: 10.2147/IJN.S62857] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
21 Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021. [PMID: 34757513 DOI: 10.1007/s11302-021-09814-6] [Reference Citation Analysis]
22 Czuba E, Diop M, Mura C, Schaschkow A, Langlois A, Bietiger W, Neidl R, Virciglio A, Auberval N, Julien-david D, Maillard E, Frere Y, Marchioni E, Pinget M, Sigrist S. Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. International Journal of Pharmaceutics 2018;542:47-55. [DOI: 10.1016/j.ijpharm.2018.02.045] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
23 Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. Journal of Food and Drug Analysis 2015;23:351-8. [DOI: 10.1016/j.jfda.2015.01.007] [Cited by in Crossref: 68] [Cited by in F6Publishing: 52] [Article Influence: 9.7] [Reference Citation Analysis]
24 Kaneko K, Osman N, Carini V, Scagnetti G, Saleem I. Overview of the Advantages and Disadvantages of Different Mucosal Sites for the Delivery of Nanoparticles. In: Muttil P, Kunda NK, editors. Mucosal Delivery of Drugs and Biologics in Nanoparticles. Cham: Springer International Publishing; 2020. pp. 61-82. [DOI: 10.1007/978-3-030-35910-2_3] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, Blumberg RS, Langer R, Farokhzad OC. Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med 2013;5:213ra167. [PMID: 24285486 DOI: 10.1126/scitranslmed.3007049] [Cited by in Crossref: 245] [Cited by in F6Publishing: 225] [Article Influence: 30.6] [Reference Citation Analysis]
26 Kammona O, Kiparissides C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release 2012;161:781-94. [PMID: 22659331 DOI: 10.1016/j.jconrel.2012.05.040] [Cited by in Crossref: 86] [Cited by in F6Publishing: 70] [Article Influence: 8.6] [Reference Citation Analysis]
27 Hobson DW. The Commercialization of Medical Nanotechnology for Medical Applications. In: Prokop A, Weissig V, editors. Intracellular Delivery III. Cham: Springer International Publishing; 2016. pp. 405-49. [DOI: 10.1007/978-3-319-43525-1_17] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
28 Parayath NN, Nehoff H, Müller P, Taurin S, Greish K. Styrene maleic acid micelles as a nanocarrier system for oral anticancer drug delivery - dual uptake through enterocytes and M-cells. Int J Nanomedicine 2015;10:4653-67. [PMID: 26229468 DOI: 10.2147/IJN.S87681] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
29 Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021;11:2449-68. [PMID: 34522594 DOI: 10.1016/j.apsb.2020.12.022] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Salari F, Varasteh AR, Vahedi F, Hashemi M, Sankian M. Down-regulation of Th2 immune responses by sublingual administration of poly (lactic-co-glycolic) acid (PLGA)-encapsulated allergen in BALB/c mice. Int Immunopharmacol 2015;29:672-8. [PMID: 26404189 DOI: 10.1016/j.intimp.2015.09.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
31 Cattani VB, Fiel LA, Jäger A, Jäger E, Colomé LM, Uchoa F, Stefani V, Dalla Costa T, Guterres SS, Pohlmann AR. Lipid-core nanocapsules restrained the indomethacin ethyl ester hydrolysis in the gastrointestinal lumen and wall acting as mucoadhesive reservoirs. Eur J Pharm Sci 2010;39:116-24. [PMID: 19932749 DOI: 10.1016/j.ejps.2009.11.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 2.5] [Reference Citation Analysis]
32 Kaneko K, Mcdowell A, Ishii Y, Hook S. Liposomal α-galactosylceramide is taken up by gut-associated lymphoid tissue and stimulates local and systemic immune responses. Journal of Pharmacy and Pharmacology 2017;69:1724-35. [DOI: 10.1111/jphp.12814] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
33 Maignien T, Shakweh M, Calvo P, Marcé D, Salès N, Fattal E, Deslys J, Couvreur P, Lasmezas CI. Role of gut macrophages in mice orally contaminated with scrapie or BSE. International Journal of Pharmaceutics 2005;298:293-304. [DOI: 10.1016/j.ijpharm.2005.02.042] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 2.5] [Reference Citation Analysis]
34 Paul W, Sharma CP. Synthesis and characterization of alginate coated zinc calcium phosphate nanoparticles for intestinal delivery of insulin. Process Biochemistry 2012;47:882-6. [DOI: 10.1016/j.procbio.2012.01.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
35 Paul W, Sharma CP. Blood compatibility studies of Swarna bhasma (gold bhasma), an Ayurvedic drug. Int J Ayurveda Res 2011;2:14-22. [PMID: 21897638 DOI: 10.4103/0974-7788.83183] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
36 Paul S, Heng PWS, Chan LW. Improvement in dissolution rate and photodynamic efficacy of chlorin e6 by sucrose esters as drug carrier in nanosuspension formulation: optimisation and in vitro characterisation. J Pharm Pharmacol 2018;70:1152-63. [PMID: 29943465 DOI: 10.1111/jphp.12947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
37 Vauthier C, Labarre D, Ponchel G. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 2007;15:641-63. [PMID: 18041633 DOI: 10.1080/10611860701603372] [Cited by in Crossref: 81] [Cited by in F6Publishing: 68] [Article Influence: 5.8] [Reference Citation Analysis]
38 Kim HS, Lee DY. Smart engineering of gold nanoparticles to improve intestinal barrier penetration. Journal of Industrial and Engineering Chemistry 2021;102:122-34. [DOI: 10.1016/j.jiec.2021.06.032] [Reference Citation Analysis]
39 Damgé C, Reis CP, Maincent P. Nanoparticle strategies for the oral delivery of insulin. Expert Opinion on Drug Delivery 2007;5:45-68. [DOI: 10.1517/17425247.5.1.45] [Cited by in Crossref: 88] [Cited by in F6Publishing: 81] [Article Influence: 5.9] [Reference Citation Analysis]
40 Nikezić AVV, Bondžić AM, Vasić VM. Drug delivery systems based on nanoparticles and related nanostructures. European Journal of Pharmaceutical Sciences 2020;151:105412. [DOI: 10.1016/j.ejps.2020.105412] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
41 Gabor F, Fillafer C, Neutsch L, Ratzinger G, Wirth M. Improving Oral Delivery. In: Schäfer-korting M, editor. Drug Delivery. Berlin: Springer Berlin Heidelberg; 2010. pp. 345-98. [DOI: 10.1007/978-3-642-00477-3_12] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
42 Patel G, Misra A. Oral Delivery of Proteins and Peptides. Challenges in Delivery of Therapeutic Genomics and Proteomics. Elsevier; 2011. pp. 481-529. [DOI: 10.1016/b978-0-12-384964-9.00010-4] [Cited by in Crossref: 9] [Article Influence: 0.8] [Reference Citation Analysis]
43 N K, S SS, S B, Nv AK, N B. Physiochemical characterization and toxicity assessment of colloidal mercuric formulation-'Sivanar amirtham'. Colloids Surf B Biointerfaces 2021;200:111607. [PMID: 33578085 DOI: 10.1016/j.colsurfb.2021.111607] [Reference Citation Analysis]
44 Ude VC, Brown DM, Stone V, Johnston HJ. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. J Nanobiotechnology 2019;17:70. [PMID: 31113462 DOI: 10.1186/s12951-019-0503-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
45 Dacoba TG, Olivera A, Torres D, Crecente-Campo J, Alonso MJ. Modulating the immune system through nanotechnology. Semin Immunol 2017;34:78-102. [PMID: 29032891 DOI: 10.1016/j.smim.2017.09.007] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 10.4] [Reference Citation Analysis]
46 Hudson LE, Stewart TP, Fasken MB, Corbett AH, Lamb TJ. Transformation of Probiotic Yeast and Their Recovery from Gastrointestinal Immune Tissues Following Oral Gavage in Mice. J Vis Exp 2016;:e53453. [PMID: 26890281 DOI: 10.3791/53453] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
47 Qiao N, Liu Q, Meng H, Zhao D. Haemolytic activity and adjuvant effect of soyasaponins and some of their derivatives on the immune responses to ovalbumin in mice. International Immunopharmacology 2014;18:333-9. [DOI: 10.1016/j.intimp.2013.12.017] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
48 Alex A, Paul W, Chacko A, Sharma CP. Enhanced delivery of lopinavir to the CNS using Compritol ® -based solid lipid nanoparticles. Therapeutic Delivery 2011;2:25-35. [DOI: 10.4155/tde.10.96] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
49 Minhat R‘B, Hagen T. A POSSIBLE APPROACH FOR ORAL DRUG DELIVERY OF NANOPARTICLES. COSMOS 2015;10:13-6. [DOI: 10.1142/s0219607714400035] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
50 Gomez-orellana I. Strategies to improve oral drug bioavailability. Expert Opinion on Drug Delivery 2005;2:419-33. [DOI: 10.1517/17425247.2.3.419] [Cited by in Crossref: 71] [Cited by in F6Publishing: 60] [Article Influence: 4.2] [Reference Citation Analysis]
51 Florence AT. Nanoparticle uptake by the oral route: Fulfilling its potential? Drug Discovery Today: Technologies 2005;2:75-81. [DOI: 10.1016/j.ddtec.2005.05.019] [Cited by in Crossref: 157] [Cited by in F6Publishing: 142] [Article Influence: 9.2] [Reference Citation Analysis]
52 Sandolo C, Péchiné S, Le Monnier A, Hoys S, Janoir C, Coviello T, Alhaique F, Collignon A, Fattal E, Tsapis N. Encapsulation of Cwp84 into pectin beads for oral vaccination against Clostridium difficile. European Journal of Pharmaceutics and Biopharmaceutics 2011;79:566-73. [DOI: 10.1016/j.ejpb.2011.05.011] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 2.8] [Reference Citation Analysis]
53 Thiagarajan G, Sadekar S, Greish K, Ray A, Ghandehari H. Evidence of oral translocation of anionic G6.5 dendrimers in mice. Mol Pharm 2013;10:988-98. [PMID: 23286733 DOI: 10.1021/mp300436c] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
54 Alfagih I, Kunda N, Alanazi F, Dennison SR, Somavarapu S, Hutcheon GA, Saleem IY. Pulmonary Delivery of Proteins Using Nanocomposite Microcarriers. Journal of Pharmaceutical Sciences 2015;104:4386-98. [DOI: 10.1002/jps.24681] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
55 Elz AS, Trevaskis NL, Porter CJH, Bowen JM, Prestidge CA. Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport. J Control Release 2021;341:676-701. [PMID: 34896450 DOI: 10.1016/j.jconrel.2021.12.003] [Reference Citation Analysis]
56 Li Z, Zhang L, Sun W, Ding Q, Hou Y, Xu Y. Archaeosomes with encapsulated antigens for oral vaccine delivery. Vaccine 2011;29:5260-6. [DOI: 10.1016/j.vaccine.2011.05.015] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
57 Minimol P, Paul W, Sharma CP. PEGylated starch acetate nanoparticles and its potential use for oral insulin delivery. Carbohydrate Polymers 2013;95:1-8. [DOI: 10.1016/j.carbpol.2013.02.021] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
58 Wu L, Zhao L, Su X, Zhang P, Ling G. Repaglinide-loaded nanostructured lipid carriers with different particle sizes for improving oral absorption: preparation, characterization, pharmacokinetics, and in situ intestinal perfusion. Drug Deliv 2020;27:400-9. [PMID: 31729898 DOI: 10.1080/10717544.2019.1689313] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013;447:75-93. [PMID: 23428883 DOI: 10.1016/j.ijpharm.2013.02.030] [Cited by in Crossref: 359] [Cited by in F6Publishing: 312] [Article Influence: 39.9] [Reference Citation Analysis]
60 Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MRJ, Garton NJ, Stapley AGF, Kirpichnikova A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci 2017;249:100-33. [PMID: 28688779 DOI: 10.1016/j.cis.2017.05.014] [Cited by in Crossref: 158] [Cited by in F6Publishing: 135] [Article Influence: 31.6] [Reference Citation Analysis]
61 Reis CP, Silva C, Martinho N, Rosado C. Drug carriers for oral delivery of peptides and proteins: accomplishments and future perspectives. Ther Deliv 2013;4:251-65. [PMID: 23343163 DOI: 10.4155/tde.12.143] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
62 Hudson LE, McDermott CD, Stewart TP, Hudson WH, Rios D, Fasken MB, Corbett AH, Lamb TJ. Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System. PLoS One 2016;11:e0153351. [PMID: 27064405 DOI: 10.1371/journal.pone.0153351] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
63 Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jérôme C, Marchand-Brynaert J, Schneider YJ, Préat V. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 2007;120:195-204. [PMID: 17586081 DOI: 10.1016/j.jconrel.2007.04.021] [Cited by in Crossref: 244] [Cited by in F6Publishing: 207] [Article Influence: 16.3] [Reference Citation Analysis]
64 Phillips CL, Welch BA, Garrett MR, Grayson BE. Regional heterogeneity in rat Peyer's patches through whole transcriptome analysis. Exp Biol Med (Maywood) 2021;246:513-22. [PMID: 33236653 DOI: 10.1177/1535370220973014] [Reference Citation Analysis]
65 Luo Z, Paunović N, Leroux JC. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev 2021;175:113814. [PMID: 34052229 DOI: 10.1016/j.addr.2021.05.024] [Reference Citation Analysis]
66 Chen M, Sonaje K, Chen K, Sung H. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials 2011;32:9826-38. [DOI: 10.1016/j.biomaterials.2011.08.087] [Cited by in Crossref: 292] [Cited by in F6Publishing: 252] [Article Influence: 26.5] [Reference Citation Analysis]
67 Fan J, Li Z, Liu X, Zheng D, Chen Y, Zhang X. Bacteria-Mediated Tumor Therapy Utilizing Photothermally-Controlled TNF-α Expression via Oral Administration. Nano Lett 2018;18:2373-80. [DOI: 10.1021/acs.nanolett.7b05323] [Cited by in Crossref: 81] [Cited by in F6Publishing: 76] [Article Influence: 20.3] [Reference Citation Analysis]
68 Woitiski CB, Carvalho RA, Ribeiro AJ, Neufeld RJ, Veiga F. Strategies Toward the Improved Oral Delivery of Insulin Nanoparticles via Gastrointestinal Uptake and Translocation: . BioDrugs 2008;22:223-37. [DOI: 10.2165/00063030-200822040-00002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 3.4] [Reference Citation Analysis]
69 Hwang SR, Byun Y. Advances in oral macromolecular drug delivery. Expert Opinion on Drug Delivery 2014;11:1955-67. [DOI: 10.1517/17425247.2014.945420] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 4.6] [Reference Citation Analysis]
70 Tong T, Wang L, You X, Wu J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater Sci 2020;8:5804-23. [PMID: 33016274 DOI: 10.1039/d0bm01151g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
71 Delon L, Gibson R, Prestidge C, Thierry B. Mechanisms of uptake and transport of particulate formulations in the small intestine. J Control Release 2022:S0168-3659(22)00078-5. [PMID: 35149142 DOI: 10.1016/j.jconrel.2022.02.006] [Reference Citation Analysis]
72 Zhang M, Merlin D. Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflamm Bowel Dis 2018;24:1401-15. [PMID: 29788186 DOI: 10.1093/ibd/izy123] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 13.3] [Reference Citation Analysis]
73 Ramachandran R, Paul W, Sharma CP. Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery. J Biomed Mater Res B Appl Biomater 2009;88:41-8. [PMID: 18946870 DOI: 10.1002/jbm.b.31241] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 4.0] [Reference Citation Analysis]
74 Sonia TA, Sharma CP. Polymers in oral insulin delivery. Oral Delivery of Insulin. Elsevier; 2014. pp. 257-310. [DOI: 10.1533/9781908818683.257] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
75 Dey M, Das M, Chowhan A, Giri TK. Breaking the barricade of oral chemotherapy through polysaccharide nanocarrier. International Journal of Biological Macromolecules 2019;130:34-49. [DOI: 10.1016/j.ijbiomac.2019.02.094] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
76 Singh R, Singh S, Lillard JW Jr. Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci 2008;97:2497-523. [PMID: 17918721 DOI: 10.1002/jps.21183] [Cited by in Crossref: 104] [Cited by in F6Publishing: 92] [Article Influence: 7.4] [Reference Citation Analysis]
77 Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids and Surfaces B: Biointerfaces 2020;196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
78 Bellmann S, Carlander D, Fasano A, Momcilovic D, Scimeca JA, Waldman WJ, Gombau L, Tsytsikova L, Canady R, Pereira DI, Lefebvre DE. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:609-622. [PMID: 25641962 DOI: 10.1002/wnan.1333] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 8.4] [Reference Citation Analysis]
79 Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 2013;65:822-32. [PMID: 23123292 DOI: 10.1016/j.addr.2012.10.007] [Cited by in Crossref: 267] [Cited by in F6Publishing: 218] [Article Influence: 26.7] [Reference Citation Analysis]
80 Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020;11:524. [PMID: 32425781 DOI: 10.3389/fphar.2020.00524] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
81 Abdelkhaliq A, van der Zande M, Punt A, Helsdingen R, Boeren S, Vervoort JJM, Rietjens IMCM, Bouwmeester H. Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport. J Nanobiotechnology 2018;16:70. [PMID: 30219059 DOI: 10.1186/s12951-018-0394-6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
82 Ostacolo L, Russo P, De Rosa G, La Rotonda MI, Maglio G, Nese G, Spagnuolo G, Rengo S, Oliva A, Quaglia F. Poly(ether ester amide) Microspheres for Protein Delivery: Influence of Copolymer Composition on Technological and Biological Properties. Macromol Biosci 2008;8:682-9. [DOI: 10.1002/mabi.200700303] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
83 Victor SP, Paul W, Jayabalan M, Sharma CP. Supramolecular hydroxyapatite complexes as theranostic near-infrared luminescent drug carriers. CrystEngComm 2014;16:9033-42. [DOI: 10.1039/c4ce01137f] [Cited by in Crossref: 36] [Article Influence: 4.5] [Reference Citation Analysis]
84 Li D, Morishita M, Wagner JG, Fatouraie M, Wooldridge M, Eagle WE, Barres J, Carlander U, Emond C, Jolliet O. In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats. Part Fibre Toxicol 2016;13:45. [PMID: 27542346 DOI: 10.1186/s12989-016-0156-2] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
85 Thomas C, Rawat A, Hope-weeks L, Ahsan F. Aerosolized PLA and PLGA Nanoparticles Enhance Humoral, Mucosal and Cytokine Responses to Hepatitis B Vaccine. Mol Pharmaceutics 2011;8:405-15. [DOI: 10.1021/mp100255c] [Cited by in Crossref: 120] [Cited by in F6Publishing: 107] [Article Influence: 10.9] [Reference Citation Analysis]
86 Mokhtar M, Gosselin P, Lacasse F, Hildgen P. Design of PEG-grafted-PLA nanoparticles as oral permeability enhancer for P-gp substrate drug model Famotidine. J Microencapsul 2017;34:91-103. [PMID: 28151040 DOI: 10.1080/02652048.2017.1290155] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
87 Kamil A, Chen CO, Blumberg JB. The application of nanoencapsulation to enhance the bioavailability and distribution of polyphenols. In: Sabliov CM, Chen H, Yada RY, editors. Nanotechnology and Functional Foods. Chichester: John Wiley & Sons, Ltd; 2015. pp. 158-74. [DOI: 10.1002/9781118462157.ch10] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
88 Correia-pinto J, Csaba N, Alonso M. Vaccine delivery carriers: Insights and future perspectives. International Journal of Pharmaceutics 2013;440:27-38. [DOI: 10.1016/j.ijpharm.2012.04.047] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 8.1] [Reference Citation Analysis]
89 Pathak K, Pattnaik S, Swain K. Application of Nanoemulsions in Drug Delivery. Nanoemulsions. Elsevier; 2018. pp. 415-33. [DOI: 10.1016/b978-0-12-811838-2.00013-8] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
90 Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjørklund G, Sochor J, Kizek R. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine 2018;13:2107-28. [PMID: 29692609 DOI: 10.2147/IJN.S157541] [Cited by in Crossref: 144] [Cited by in F6Publishing: 50] [Article Influence: 36.0] [Reference Citation Analysis]
91 Cao SJ, Xu S, Wang HM, Ling Y, Dong J, Xia RD, Sun XH. Nanoparticles: Oral Delivery for Protein and Peptide Drugs. AAPS PharmSciTech 2019;20:190. [PMID: 31111296 DOI: 10.1208/s12249-019-1325-z] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 17.7] [Reference Citation Analysis]
92 Sonia T, Sharma CP. An overview of natural polymers for oral insulin delivery. Drug Discovery Today 2012;17:784-92. [DOI: 10.1016/j.drudis.2012.03.019] [Cited by in Crossref: 103] [Cited by in F6Publishing: 84] [Article Influence: 10.3] [Reference Citation Analysis]
93 Mura S, Fattal E, Nicolas J. From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. J Drug Target 2019;27:470-501. [PMID: 30720372 DOI: 10.1080/1061186X.2019.1579822] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
94 Maroni A, Zema L, Del Curto MD, Foppoli A, Gazzaniga A. Oral colon delivery of insulin with the aid of functional adjuvants. Advanced Drug Delivery Reviews 2012;64:540-56. [DOI: 10.1016/j.addr.2011.10.006] [Cited by in Crossref: 77] [Cited by in F6Publishing: 74] [Article Influence: 7.7] [Reference Citation Analysis]
95 Julio-Pieper M, Bravo JA. Intestinal Barrier and Behavior. Int Rev Neurobiol. 2016;131:127-141. [PMID: 27793215 DOI: 10.1016/bs.irn.2016.08.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
96 Esch MB, Mahler GJ, Stokol T, Shuler ML. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 2014;14:3081-92. [PMID: 24970651 DOI: 10.1039/c4lc00371c] [Cited by in Crossref: 154] [Cited by in F6Publishing: 66] [Article Influence: 22.0] [Reference Citation Analysis]
97 De Smet R, Allais L, Cuvelier CA. Recent advances in oral vaccine development: yeast-derived β-glucan particles. Hum Vaccin Immunother 2014;10:1309-18. [PMID: 24553259 DOI: 10.4161/hv.28166] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 4.6] [Reference Citation Analysis]
98 Kaneko K, Mcdowell A, Ishii Y, Hook S. Characterization and evaluation of stabilized particulate formulations as therapeutic oral vaccines for allergy. Journal of Liposome Research 2018;28:296-304. [DOI: 10.1080/08982104.2017.1370472] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]