BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Norman P. Investigational p38 inhibitors for the treatment of chronic obstructive pulmonary disease. Expert Opinion on Investigational Drugs 2014;24:383-92. [DOI: 10.1517/13543784.2015.1006358] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Romeo I, Ambrosio FA, Costa G, Corona A, Alkhatib M, Salpini R, Lemme S, Vergni D, Svicher V, Santoro MM, Tramontano E, Ceccherini-silberstein F, Artese A, Alcaro S. Targeting SARS-CoV-2 nsp13 Helicase and Assessment of Druggability Pockets: Identification of Two Potent Inhibitors by a Multi-Site In Silico Drug Repurposing Approach. Molecules 2022;27:7522. [DOI: 10.3390/molecules27217522] [Reference Citation Analysis]
2 Yu H, Su X, Lei T, Zhang L, Feng Z, Zhang C, Zhang M, Wang Y, Chen X, Liu J. Safety and efficacy of p38 mitogen-activated protein kinase inhibitors (MAPKIs) in COPD. Front Pharmacol 2022;13:950035. [DOI: 10.3389/fphar.2022.950035] [Reference Citation Analysis]
3 Armani E, Capaldi C, Bagnacani V, Saccani F, Aquino G, Puccini P, Facchinetti F, Martucci C, Moretto N, Villetti G, Patacchini R, Civelli M, Hurley C, Jennings A, Alcaraz L, Bloomfield D, Briggs M, Daly S, Panchal T, Russell V, Wicks S, Finch H, Fitzgerald M, Fox C, Delcanale M. Design, Synthesis, and Biological Characterization of Inhaled p38α/β MAPK Inhibitors for the Treatment of Lung Inflammatory Diseases. J Med Chem 2022. [PMID: 35546685 DOI: 10.1021/acs.jmedchem.2c00115] [Reference Citation Analysis]
4 Singh D. New Drugs for Airway Diseases. Encyclopedia of Respiratory Medicine 2022. [DOI: 10.1016/b978-0-08-102723-3.00170-0] [Reference Citation Analysis]
5 Morgan D, Berggren KL, Spiess CD, Smith HM, Tejwani A, Weir SJ, Lominska CE, Thomas SM, Gan GN. Mitogen-activated protein kinase-activated protein kinase-2 (MK2) and its role in cell survival, inflammatory signaling, and migration in promoting cancer. Mol Carcinog 2021. [PMID: 34559922 DOI: 10.1002/mc.23348] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Burke H, Wilkinson TMA. Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care. Eur Respir Rev 2021;30:210041. [PMID: 34415848 DOI: 10.1183/16000617.0041-2021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
7 Brennan CM, Emerson CP Jr, Owens J, Christoforou N. p38 MAPKs - roles in skeletal muscle physiology, disease mechanisms, and as potential therapeutic targets. JCI Insight 2021;6:149915. [PMID: 34156029 DOI: 10.1172/jci.insight.149915] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
8 Kazi AA, Subba Reddy BV, Ravithej Singh L. Synthetic approaches to FDA approved drugs for asthma and COPD from 1969 to 2020. Bioorg Med Chem 2021;41:116212. [PMID: 34000507 DOI: 10.1016/j.bmc.2021.116212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Pelaia C, Vatrella A, Gallelli L, Lombardo N, Sciacqua A, Savino R, Pelaia G. Role of p38 Mitogen-Activated Protein Kinase in Asthma and COPD: Pathogenic Aspects and Potential Targeted Therapies. Drug Des Devel Ther 2021;15:1275-84. [PMID: 33790539 DOI: 10.2147/DDDT.S300988] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
10 Sharma T, Abohashrh M, Baig MH, Dong JJ, Alam MM, Ahmad I, Irfan S. Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19. Saudi J Biol Sci 2021;28:3152-9. [PMID: 33649700 DOI: 10.1016/j.sjbs.2021.02.059] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
11 Victoni T, Barreto E, Lagente V, Carvalho VF. Oxidative Imbalance as a Crucial Factor in Inflammatory Lung Diseases: Could Antioxidant Treatment Constitute a New Therapeutic Strategy? Oxid Med Cell Longev 2021;2021:6646923. [PMID: 33628371 DOI: 10.1155/2021/6646923] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
12 Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 2020;5:248. [PMID: 33110061 DOI: 10.1038/s41392-020-00345-x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 18.0] [Reference Citation Analysis]
13 Raubo P, Evans R, Willis P. The discovery and evaluation of 3-amino-2(1H)-pyrazinones as a novel series of selective p38α MAP kinase inhibitors. Bioorg Med Chem Lett 2020;30:127412. [PMID: 32717614 DOI: 10.1016/j.bmcl.2020.127412] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 Rojas LA, Valentine E, Accorsi A, Maglio J, Shen N, Robertson A, Kazmirski S, Rahl P, Tawil R, Cadavid D, Thompson LA, Ronco L, Chang AN, Cacace AM, Wallace O. p38 α Regulates Expression of DUX4 in a Model of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther 2020;374:489-98. [DOI: 10.1124/jpet.119.264689] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
15 Park JB, Peters R, Pham Q, Wang TTY. Javamide-II Inhibits IL-6 without Significant Impact on TNF-alpha and IL-1beta in Macrophage-Like Cells. Biomedicines 2020;8:E138. [PMID: 32485858 DOI: 10.3390/biomedicines8060138] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Zonneville J, Colligan S, Grant S, Miller A, Wallace P, Abrams SI, Bakin AV. Blockade of p38 kinase impedes the mobilization of protumorigenic myeloid populations to impact breast cancer metastasis. Int J Cancer 2020;147:2279-92. [PMID: 32452014 DOI: 10.1002/ijc.33050] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
17 Marenghi G, Clementino AR, Fioni A, Buttini F, Sonvico F. Pulmonary delivery of a p38 α/β MAP kinase inhibitor: bioanalytical method validation and biodistribution in rat plasma and respiratory tissues. Eur J Pharm Sci 2020;149:105341. [PMID: 32305320 DOI: 10.1016/j.ejps.2020.105341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Pelaia C, Vatrella A, Sciacqua A, Terracciano R, Pelaia G. Role of p38-mitogen-activated protein kinase in COPD: pathobiological implications and therapeutic perspectives. Expert Rev Respir Med 2020;14:485-91. [PMID: 32077346 DOI: 10.1080/17476348.2020.1732821] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
19 Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020;19:253-75. [DOI: 10.1038/s41573-019-0054-z] [Cited by in Crossref: 233] [Cited by in F6Publishing: 243] [Article Influence: 116.5] [Reference Citation Analysis]
20 Qu J, Zhou C, Hao N, Chen G, Xia S, Wei H, Fang L. Development of a validated UPLC-MS/MS method for quantification of p38 MAPK inhibitor PH-797804: Application to a pharmacokinetic study in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019;1134-1135:121877. [PMID: 31785533 DOI: 10.1016/j.jchromb.2019.121877] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
21 Strâmbu IR, Kobalava ZD, Magnusson BP, MacKinnon A, Parkin JM. Phase II Study of Single/Repeated Doses of Acumapimod (BCT197) to Treat Acute Exacerbations of COPD. COPD 2019;16:344-53. [PMID: 31682162 DOI: 10.1080/15412555.2019.1682535] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
22 Rojas LA, Valentine E, Accorsi A, Maglio J, Shen N, Robertson A, Kazmirski S, Rahl P, Tawil R, Cadavid D, Thompson LA, Ronco L, Chang AN, Cacace AM, Wallace O. P38α Regulates Expression of DUX4 in Facioscapulohumeral Muscular Dystrophy.. [DOI: 10.1101/700195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Egbert M, Whitty A, Keserű GM, Vajda S. Why Some Targets Benefit from beyond Rule of Five Drugs. J Med Chem 2019;62:10005-25. [PMID: 31188592 DOI: 10.1021/acs.jmedchem.8b01732] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 15.3] [Reference Citation Analysis]
24 Oliva J, Galasinski S, Richey A, Campbell AE, Meyers MJ, Modi N, Zhong JW, Tawil R, Tapscott SJ, Sverdrup FM. Clinically Advanced p38 Inhibitors Suppress DUX4 Expression in Cellular and Animal Models of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther 2019;370:219-30. [PMID: 31189728 DOI: 10.1124/jpet.119.259663] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
25 Zhang X, Yan F, Tang K, Chen Q, Guo J, Zhu W, He S, Banadyga L, Qiu X, Guo Y. Identification of a clinical compound losmapimod that blocks Lassa virus entry. Antiviral Res 2019;167:68-77. [PMID: 30953674 DOI: 10.1016/j.antiviral.2019.03.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
26 Bartolini D, Bührmann M, Barreca ML, Manfroni G, Cecchetti V, Rauh D, Galli F. Co-crystal structure determination and cellular evaluation of 1,4-dihydropyrazolo[4,3-c] [1,2] benzothiazine 5,5-dioxide p38α MAPK inhibitors. Biochemical and Biophysical Research Communications 2019;511:579-86. [DOI: 10.1016/j.bbrc.2019.02.063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
27 Mehta M, Deeksha, Sharma N, Vyas M, Khurana N, Maurya PK, Singh H, Andreoli de Jesus TP, Dureja H, Chellappan DK, Gupta G, Wadhwa R, Collet T, Hansbro PM, Dua K, Satija S. Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact 2019;304:10-9. [PMID: 30849336 DOI: 10.1016/j.cbi.2019.02.021] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 19.7] [Reference Citation Analysis]
28 Ti H, Zhou Y, Liang X, Li R, Ding K, Zhao X. Targeted Treatments for Chronic Obstructive Pulmonary Disease (COPD) Using Low-Molecular-Weight Drugs (LMWDs). J Med Chem 2019;62:5944-78. [PMID: 30682248 DOI: 10.1021/acs.jmedchem.8b01520] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
29 Nayak AP, Deshpande DA, Penn RB. New targets for resolution of airway remodeling in obstructive lung diseases. F1000Res 2018;7:F1000 Faculty Rev-680. [PMID: 29904584 DOI: 10.12688/f1000research.14581.1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
30 Lo CY, Huang HY, He JR, Huang TT, Heh CC, Sheng TF, Chung KF, Kuo HP, Wang CH. Increased matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio in smokers with airway hyperresponsiveness and accelerated lung function decline. Int J Chron Obstruct Pulmon Dis 2018;13:1135-44. [PMID: 29692608 DOI: 10.2147/COPD.S161257] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
31 Abrahams A, Mouchet N, Gouault N, Lohézic Le Dévéhat F, Le Roch M, Rouaud I, Gilot D, Galibert MD. Integrating targeted gene expression and a skin model system to identify functional inhibitors of the UV activated p38 MAP kinase. Photochem Photobiol Sci 2016;15:1468-75. [PMID: 27748490 DOI: 10.1039/c6pp00283h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
32 Pehrson R, Hegelund-myrbäck T, Cunoosamy D, Asimus S, Jansson P, Patel N, Borde A, Lundin S. AZD7624, an Inhaled p38 Inhibitor, Demonstrates Local Lung Inhibition of LPS-Induced TNF α with Minimal Systemic Exposure. J Pharmacol Exp Ther 2018;365:567-72. [DOI: 10.1124/jpet.117.246132] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
33 Gross NJ, Barnes PJ. New Therapies for Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017;195:159-66. [PMID: 27922751 DOI: 10.1164/rccm.201610-2074PP] [Cited by in Crossref: 69] [Cited by in F6Publishing: 73] [Article Influence: 13.8] [Reference Citation Analysis]
34 Zhu S, Luo H, Liu H, Ha Y, Mays ER, Lawrence RE, Winkelmann E, Barrett AD, Smith SB, Wang M, Wang T, Zhang W. p38MAPK plays a critical role in induction of a pro-inflammatory phenotype of retinal Müller cells following Zika virus infection. Antiviral Res 2017;145:70-81. [PMID: 28739278 DOI: 10.1016/j.antiviral.2017.07.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
35 Lakshmi SP, Reddy AT, Reddy RC. Emerging pharmaceutical therapies for COPD. Int J Chron Obstruct Pulmon Dis 2017;12:2141-56. [PMID: 28790817 DOI: 10.2147/COPD.S121416] [Cited by in Crossref: 29] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
36 Gadina M, Gazaniga N, Vian L, Furumoto Y. Small molecules to the rescue: Inhibition of cytokine signaling in immune-mediated diseases. J Autoimmun 2017;85:20-31. [PMID: 28676205 DOI: 10.1016/j.jaut.2017.06.006] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 9.4] [Reference Citation Analysis]
37 Limoge M, Safina A, Truskinovsky AM, Aljahdali I, Zonneville J, Gruevski A, Arteaga CL, Bakin AV. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors. Oncotarget 2017;8:61969-81. [PMID: 28977919 DOI: 10.18632/oncotarget.18755] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
38 Singh RK, Diwan M, Dastidar SG, Najmi AK. Differential effect of p38 and MK2 kinase inhibitors on the inflammatory and toxicity biomarkers in vitro. Hum Exp Toxicol 2018;37:521-31. [PMID: 28629242 DOI: 10.1177/0960327117715901] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
39 Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2016;68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 15.0] [Reference Citation Analysis]
40 Kim HP, Lim H, Kwon YS. Therapeutic Potential of Medicinal Plants and Their Constituents on Lung Inflammatory Disorders. Biomol Ther (Seoul) 2017;25:91-104. [PMID: 27956716 DOI: 10.4062/biomolther.2016.187] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
41 Dhar TM, Dyckman A. Evolution of Small-Molecule Immunology Research—Changes Since CMC II. Comprehensive Medicinal Chemistry III 2017. [DOI: 10.1016/b978-0-12-409547-2.12401-1] [Reference Citation Analysis]
42 Tsui H, Zeng Q, Chen K, Zhang X. Inhibiting Kinases in the CNS. Comprehensive Medicinal Chemistry III 2017. [DOI: 10.1016/b978-0-12-409547-2.13815-6] [Reference Citation Analysis]
43 Hochberg CH, Sidhaye VK. The Respiratory Epithelium in COPD. Lung Epithelial Biology in the Pathogenesis of Pulmonary Disease 2017. [DOI: 10.1016/b978-0-12-803809-3.00009-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
44 Yamauchi Y, Nagase T. New Anti-inflammatory Drugs for COPD: Is There a Possibility of Developing Drugs That Can Fundamentally Suppress Inflammation? In: Nakamura H, Aoshiba K, editors. Chronic Obstructive Pulmonary Disease. Singapore: Springer; 2017. pp. 267-78. [DOI: 10.1007/978-981-10-0839-9_14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
45 Cappelli A, Nannicini C, Chelini A, Paolino M, Giuliani G, Anzini M, Giordani A, Sabatini C, Caselli G, Mennuni L, Makovec F, Giorgi G, Vomero S, Menziani MC. Phenylindenone isomers as divergent modulators of p38α MAP kinase. Bioorganic & Medicinal Chemistry Letters 2016;26:5160-3. [DOI: 10.1016/j.bmcl.2016.10.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
46 Igea A, Gupta J, Nebreda AR. Targeting of non-oncogene addiction. Aging (Albany NY) 2015;7:525-6. [PMID: 26298432 DOI: 10.18632/aging.100796] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
47 Fyfe MC. Non-systemic Intestine-Targeted Drugs. Prog Med Chem 2016;55:1-44. [PMID: 26852933 DOI: 10.1016/bs.pmch.2015.10.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
48 Fiore M, Forli S, Manetti F. Targeting Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MAPKAPK2, MK2): Medicinal Chemistry Efforts To Lead Small Molecule Inhibitors to Clinical Trials. J Med Chem 2016;59:3609-34. [PMID: 26502061 DOI: 10.1021/acs.jmedchem.5b01457] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 7.7] [Reference Citation Analysis]
49 Barjaktarevic IZ, Arredondo AF, Cooper CB. Positioning new pharmacotherapies for COPD. Int J Chron Obstruct Pulmon Dis 2015;10:1427-42. [PMID: 26244017 DOI: 10.2147/COPD.S83758] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
50 Alaoui-Jamali M. Comment on "p38 MAPK inhibition alleviates experimental acute pancreatitis in mice". Hepatobiliary Pancreat Dis Int 2015;14:330. [PMID: 26063037 DOI: 10.1016/s1499-3872(15)60366-6] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]