BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khan G, Merajver S. Copper chelation in cancer therapy using tetrathiomolybdate: an evolving paradigm. Expert Opinion on Investigational Drugs 2009;18:541-8. [DOI: 10.1517/13543780902845622] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Paletta-Silva R, Vieira DP, Vieira-Bernardo R, Majerowicz D, Gondim KC, Vannier-Santos MA, Lopes AH, Meyer-Fernandes JR. Leishmania amazonensis: characterization of an ecto-3'-nucleotidase activity and its possible role in virulence. Exp Parasitol 2011;129:277-83. [PMID: 21827749 DOI: 10.1016/j.exppara.2011.07.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
2 Li D, Wang J, Gao J. Primary breast cancer in a patient with Wilson disease: A case report. Medicine (Baltimore) 2019;98:e15266. [PMID: 31083157 DOI: 10.1097/MD.0000000000015266] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Duncan C, White AR. Copper complexes as therapeutic agents. Metallomics 2012;4:127-38. [PMID: 22187112 DOI: 10.1039/c2mt00174h] [Cited by in Crossref: 178] [Cited by in F6Publishing: 27] [Article Influence: 17.8] [Reference Citation Analysis]
4 Jomova K, Baros S, Valko M. Redox active metal-induced oxidative stress in biological systems. Transition Met Chem 2012;37:127-34. [DOI: 10.1007/s11243-012-9583-6] [Cited by in Crossref: 105] [Cited by in F6Publishing: 63] [Article Influence: 11.7] [Reference Citation Analysis]
5 Aird KM, Allensworth JL, Batinic-Haberle I, Lyerly HK, Dewhirst MW, Devi GR. ErbB1/2 tyrosine kinase inhibitor mediates oxidative stress-induced apoptosis in inflammatory breast cancer cells. Breast Cancer Res Treat 2012;132:109-19. [PMID: 21559822 DOI: 10.1007/s10549-011-1568-1] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
6 Yu Z, Zhou R, Zhao Y, Pan Y, Liang H, Zhang JS, Tai S, Jin L, Teng CB. Blockage of SLC31A1-dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif 2019;52:e12568. [PMID: 30706544 DOI: 10.1111/cpr.12568] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
7 Calderon-Aparicio A, Strasberg-Rieber M, Rieber M. Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate. Oncotarget 2015;6:29771-81. [PMID: 26356671 DOI: 10.18632/oncotarget.4833] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
8 Wang T, Fu Y, Huang T, Liu Y, Wu M, Yuan Y, Li S, Li C. Copper Ion Attenuated the Antiproliferative Activity of Di-2-pyridylhydrazone Dithiocarbamate Derivative; However, There Was a Lack of Correlation between ROS Generation and Antiproliferative Activity. Molecules 2016;21:E1088. [PMID: 27556432 DOI: 10.3390/molecules21081088] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
9 Crowe A, Jackaman C, Beddoes KM, Ricciardo B, Nelson DJ. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration. PLoS One 2013;8:e73684. [PMID: 24013775 DOI: 10.1371/journal.pone.0073684] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
10 Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in Copper Complexes as Anticancer Agents. Chem Rev 2014;114:815-62. [DOI: 10.1021/cr400135x] [Cited by in Crossref: 936] [Cited by in F6Publishing: 721] [Article Influence: 117.0] [Reference Citation Analysis]
11 Aubert L, Nandagopal N, Steinhart Z, Lavoie G, Nourreddine S, Berman J, Saba-El-Leil MK, Papadopoli D, Lin S, Hart T, Macleod G, Topisirovic I, Gaboury L, Fahrni CJ, Schramek D, Meloche S, Angers S, Roux PP. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat Commun 2020;11:3701. [PMID: 32709883 DOI: 10.1038/s41467-020-17549-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
12 Haleel A, Mahendiran D, Veena V, Sakthivel N, Rahiman AK. Antioxidant, DNA interaction, VEGFR2 kinase, topoisomerase I and in vitro cytotoxic activities of heteroleptic copper(II) complexes of tetrazolo[1,5-a]pyrimidines and diimines. Materials Science and Engineering: C 2016;68:366-82. [DOI: 10.1016/j.msec.2016.05.120] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 4.6] [Reference Citation Analysis]
13 Marzo T, La Mendola D. The Effects on Angiogenesis of Relevant Inorganic Chemotherapeutics. Curr Top Med Chem 2021;21:73-86. [PMID: 33243124 DOI: 10.2174/1568026620666201126163436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wang D, Peng S, Amin AR, Rahman MA, Nannapaneni S, Liu Y, Shin DM, Saba NF, Eichler JF, Chen ZG. Antitumor Activity of 2,9-Di-Sec-Butyl-1,10-Phenanthroline. PLoS One 2016;11:e0168450. [PMID: 28033401 DOI: 10.1371/journal.pone.0168450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
15 Massoud SS, Louka FR, Dial MT, Malek AJ, Fischer RC, Mautner FA, Vančo J, Malina T, Dvořák Z, Trávníček Z. Identification of potent anticancer copper(ii) complexes containing tripodal bis[2-ethyl-di(3,5-dialkyl-1H-pyrazol-1-yl)]amine moiety. Dalton Trans 2021;50:11521-34. [PMID: 34346447 DOI: 10.1039/d1dt01724a] [Reference Citation Analysis]
16 Chisholm CL, Wang H, Wong AH, Vazquez-Ortiz G, Chen W, Xu X, Deng CX. Ammonium tetrathiomolybdate treatment targets the copper transporter ATP7A and enhances sensitivity of breast cancer to cisplatin. Oncotarget 2016;7:84439-52. [PMID: 27806319 DOI: 10.18632/oncotarget.12992] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
17 Phatak VM, Muller PAJ. Metal toxicity and the p53 protein: an intimate relationship. Toxicol Res 2015;4:576-91. [DOI: 10.1039/c4tx00117f] [Cited by in Crossref: 9] [Article Influence: 1.5] [Reference Citation Analysis]
18 Gomer RH, Lupher ML Jr. Investigational approaches to therapies for idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2010;19:737-45. [PMID: 20443753 DOI: 10.1517/13543784.2010.484018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
19 Helz GR, Erickson BE. Extraordinary stability of copper(I)-tetrathiomolybdate complexes: Possible implications for aquatic ecosystems. Environmental Toxicology and Chemistry 2011;30:97-102. [DOI: 10.1002/etc.379] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
20 Calderon-Aparicio A, Cornejo A, Orue A, Rieber M. Anticancer response to disulfiram may be enhanced by co-treatment with MEK inhibitor or oxaliplatin: modulation by tetrathiomolybdate, KRAS/BRAF mutations and c-MYC/p53 status. Ecancermedicalscience 2019;13:890. [PMID: 30792807 DOI: 10.3332/ecancer.2019.890] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
21 Kenneth NS, Hucks GE Jr, Kocab AJ, McCollom AL, Duckett CS. Copper is a potent inhibitor of both the canonical and non-canonical NFκB pathways. Cell Cycle 2014;13:1006-14. [PMID: 24552822 DOI: 10.4161/cc.27922] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
22 Navrátilová J, Hankeová T, Beneš P, Šmarda J. Low-Glucose Conditions of Tumor Microenvironment Enhance Cytotoxicity of Tetrathiomolybdate to Neuroblastoma Cells. Nutrition and Cancer 2013;65:702-10. [DOI: 10.1080/01635581.2013.789118] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
23 Sborov DW, Haverkos BM, Harris PJ. Investigational cancer drugs targeting cell metabolism in clinical development. Expert Opin Investig Drugs 2015;24:79-94. [PMID: 25224845 DOI: 10.1517/13543784.2015.960077] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 6.7] [Reference Citation Analysis]
24 Singh R, Devi PR, Jana SS, Devkar RV, Chakraborty D. Aminoacid-derivatized Cu (II) complexes: Synthesis, DNA interactions and in vitro cytotoxicity. Journal of Organometallic Chemistry 2017;849-850:157-69. [DOI: 10.1016/j.jorganchem.2017.04.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
25 Baldari S, Di Rocco G, Heffern MC, Su TA, Chang CJ, Toietta G. Effects of Copper Chelation on BRAFV600E Positive Colon Carcinoma Cells. Cancers (Basel) 2019;11:E659. [PMID: 31083627 DOI: 10.3390/cancers11050659] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
26 Turski ML, Brady DC, Kim HJ, Kim BE, Nose Y, Counter CM, Winge DR, Thiele DJ. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol Cell Biol 2012;32:1284-95. [PMID: 22290441 DOI: 10.1128/MCB.05722-11] [Cited by in Crossref: 125] [Cited by in F6Publishing: 75] [Article Influence: 13.9] [Reference Citation Analysis]
27 Qi J, Xing Y, Liu Y, Wang MM, Wei X, Sui Z, Ding L, Zhang Y, Lu C, Fei YH, Liu N, Chen R, Wu M, Wang L, Zhong Z, Wang T, Liu Y, Wang Y, Liu J, Xu H, Guo F, Wang W. MCOLN1/TRPML1 finely controls oncogenic autophagy in cancer by mediating zinc influx. Autophagy 2021;:1-22. [PMID: 33890549 DOI: 10.1080/15548627.2021.1917132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Linder MC. The relationship of copper to DNA damage and damage prevention in humans. Mutat Res 2012;733:83-91. [PMID: 23463874 DOI: 10.1016/j.mrfmmm.2012.03.010] [Cited by in Crossref: 68] [Cited by in F6Publishing: 58] [Article Influence: 8.5] [Reference Citation Analysis]
29 Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. TPEN induces apoptosis independently of zinc chelator activity in a model of acute lymphoblastic leukemia and ex vivo acute leukemia cells through oxidative stress and mitochondria caspase-3- and AIF-dependent pathways. Oxid Med Cell Longev 2012;2012:313275. [PMID: 23320127 DOI: 10.1155/2012/313275] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
30 Sabayan B, Farshchi S, Zamiri N, Sabayan B. Can tetrathiomolybdate be a potential agent against Alzheimer disease? A hypothesis based on abnormal copper homeostasis in brain. Alzheimer Dis Assoc Disord 2010;24:309-10. [PMID: 20798613 DOI: 10.1097/WAD.0b013e3181d5e5a3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
31 Farrer NJ, Sadler PJ. Medicinal Inorganic Chemistry: State of the Art, New Trends, and a Vision of the Future. In: Alessio E, editor. Bioinorganic Medicinal Chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. pp. 1-47. [DOI: 10.1002/9783527633104.ch1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
32 Chen SY, Liu ST, Lin WR, Lin CK, Huang SM. The Mechanisms Underlying the Cytotoxic Effects of Copper Via Differentiated Embryonic Chondrocyte Gene 1. Int J Mol Sci 2019;20:E5225. [PMID: 31652494 DOI: 10.3390/ijms20205225] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]