BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang W, Li H, Hopmann E, Elezzabi AY. Nanostructured inorganic electrochromic materials for light applications. Nanophotonics 2020;10:825-50. [DOI: 10.1515/nanoph-2020-0474] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 23.5] [Reference Citation Analysis]
Number Citing Articles
1 Promjantuk C, Lertvanithphol T, Limsuwan N, Limwichean S, Wongdamnern N, Sareein T, Phae-ngam W, Nakajima H, Poolcharuansin P, Horprathum M, Klamchuen A. Spectroscopic study on alternative plasmonic TiN-NRs film prepared by R-HiPIMS with GLAD technique. Radiation Physics and Chemistry 2023;202:110589. [DOI: 10.1016/j.radphyschem.2022.110589] [Reference Citation Analysis]
2 Chen H, Xing J, Wang W, Li X, Shu M, Gao P, Pan Y, Liu J. Electrochromic and energy storage properties of novel terpyridine-Fe(II) coordination polymers: Improving performance by molecular engineering of nonconjugated linkers from linear to three-arm star configuration. Solar Energy Materials and Solar Cells 2022;248:111967. [DOI: 10.1016/j.solmat.2022.111967] [Reference Citation Analysis]
3 Klein J, Alarslan F, Steinhart M, Haase M. Cerium‐Modified Mesoporous Antimony Doped Tin Oxide as Intercalation‐Free Charge Storage Layers for Electrochromic Devices. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202210167] [Reference Citation Analysis]
4 Corrales J, Acosta J, Castro S, Riascos H, Serna-galvis E, Torres-palma RA, Ávila-torres Y. Manganese Dioxide Nanoparticles Prepared by Laser Ablation as Materials with Interesting Electronic, Electrochemical, and Disinfecting Properties in Both Colloidal Suspensions and Deposited on Fluorine-Doped Tin Oxide. Nanomaterials 2022;12:4061. [DOI: 10.3390/nano12224061] [Reference Citation Analysis]
5 Chai J, Fan J. Solar and Thermal Radiation‐Modulation Materials for Building Applications. Advanced Energy Materials 2022. [DOI: 10.1002/aenm.202202932] [Reference Citation Analysis]
6 Habashyani S, Mobtakeri S, Gür E. In-situ controlled oxidation of sputtered WS2 nano-walls for high-performance WO3 electrochromic devices. Electrochimica Acta 2022. [DOI: 10.1016/j.electacta.2022.141469] [Reference Citation Analysis]
7 Bi S, Jin W, Han X, Cao X, He Z, Asare-yeboah K, Jiang C. Ultra-fast-responsivity with sharp contrast integrated flexible piezo electrochromic based tactile sensing display. Nano Energy 2022;102:107629. [DOI: 10.1016/j.nanoen.2022.107629] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Xie H, Wang Y, Liu H, Wang H, Li Y, Qi X, Liang T, Zeng J. Electrochromic electrode with high optical contrast and long cyclic life using nest-like porous doped-Sm WO3 films. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.10.347] [Reference Citation Analysis]
9 Ali F, Neelakantan L, Swaminathan P. Electrochromic Displays via the Room-Temperature Electrochemical Oxidation of Nickel. ACS Omega. [DOI: 10.1021/acsomega.2c04859] [Reference Citation Analysis]
10 Jo M, Kim K, Ahn H. P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices. Chemical Engineering Journal 2022;445:136826. [DOI: 10.1016/j.cej.2022.136826] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Trovato V, Sfameni S, Rando G, Rosace G, Libertino S, Ferri A, Plutino MR. A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules 2022;27:5709. [PMID: 36080476 DOI: 10.3390/molecules27175709] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Thongpan W, Kumpika T, Tippo P, Jumrus N, Kantarak E, Sroila W, Thongsuwan W, Singjai P. Enhancement reversibility and electrochromic efficiency of porous WO3 films by sparking method under electric/magnetic field. Materials Letters 2022. [DOI: 10.1016/j.matlet.2022.133171] [Reference Citation Analysis]
13 Wang B, Zhang W, Zhao F, Yu WW, Elezzabi AY, Liu L, Li H. An overview of recent progress in the development of flexible electrochromic devices. Nano Materials Science 2022. [DOI: 10.1016/j.nanoms.2022.08.002] [Reference Citation Analysis]
14 Niu J, Zhang J, Wang Y, Hu L, Tang S, Wan Z, Jia C, Weng X, Deng L. A Light-Weight, Thin-Thickness, Flexible Multifunctional Electrochromic Device Integrated with Variable Optical, Thermal Management and Energy Storage. Electrochimica Acta 2022. [DOI: 10.1016/j.electacta.2022.141274] [Reference Citation Analysis]
15 Naveen Kumar K, Nithya G, Shaik H, Hemanth B, Chethana M, Kishore K, Madhavi V, Jafri RI, Sattar SA, Gupta J, Ashok Reddy G. Simulation and fabrication of tungsten oxide thin films for electrochromic applications. Physica B: Condensed Matter 2022;640:413932. [DOI: 10.1016/j.physb.2022.413932] [Reference Citation Analysis]
16 Kong S, Zhang G, Li M, Yao R, Guo C, Ning H, Zhang J, Tao R, Yan H, Lu X. Investigation of an Electrochromic Device Based on Ammonium Metatungstate-Iron (II) Chloride Electrochromic Liquid. Micromachines (Basel) 2022;13:1345. [PMID: 36014270 DOI: 10.3390/mi13081345] [Reference Citation Analysis]
17 Özgür NA, Pat S, Mohammadigharehbagh R, Korkmaz Ş. Substrate effect on electrochromic properties of Nb2O5:TiO2 nanocomposite thin films deposited by thermionic vacuum arc. Vacuum 2022;202:111186. [DOI: 10.1016/j.vacuum.2022.111186] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Esmeraldo Paiva A, Baez Vasquez JF, Selkirk A, Prochukhan N, G L Medeiros Borsagli F, Morris M. Highly Ordered Porous Inorganic Structures via Block Copolymer Lithography: An Application of the Versatile and Selective Infiltration of the "Inverse" P2VP-b-PS System. ACS Appl Mater Interfaces 2022. [PMID: 35876355 DOI: 10.1021/acsami.2c10338] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Li M, Yan H, Ning H, Li X, Zhong J, Fu X, Qiu T, Luo D, Yao R, Peng J. Application of Tungsten-Oxide-Based Electrochromic Devices for Supercapacitors. ASI 2022;5:60. [DOI: 10.3390/asi5040060] [Reference Citation Analysis]
20 Ortiz J, Acosta D, Magaña C. Long-term cycling and stability of crystalline WO3 electrochromic thin films prepared by spray pyrolysis. J Solid State Electrochem. [DOI: 10.1007/s10008-022-05211-0] [Reference Citation Analysis]
21 Zhang W, Li H, Elezzabi AY. Nanoscale Manipulating Silver Adatoms for Aqueous Plasmonic Electrochromic Devices. Adv Materials Inter. [DOI: 10.1002/admi.202200021] [Reference Citation Analysis]
22 Kim KH, Morohoshi M, Abe Y. Color modulation of electrochromic nanosheet-structured nickel–cobalt oxide thin films. Appl Phys A 2022;128. [DOI: 10.1007/s00339-022-05657-z] [Reference Citation Analysis]
23 Qu S, Guan J, Cai D, Wang Q, Wang X, Song W, Ji W. An Electrochromic Ag-Decorated WO3-x Film with Adjustable Defect States for Electrochemical Surface-Enhanced Raman Spectroscopy. Nanomaterials (Basel) 2022;12:1637. [PMID: 35630860 DOI: 10.3390/nano12101637] [Reference Citation Analysis]
24 Yu D, Wei W, Wei M, Wang F, Liang X, Sun S, Gao M, Zhu Q. Research on the electrochromic properties of Mxene intercalated vanadium pentoxide xerogel films. J Solid State Electrochem. [DOI: 10.1007/s10008-022-05171-5] [Reference Citation Analysis]
25 Hopmann E, Shahriar BY, Elezzabi AY. On-chip high ion sensitivity electrochromic nanophotonic light modulator. Nanoscale 2022;14:6526-34. [PMID: 35420615 DOI: 10.1039/d2nr00646d] [Reference Citation Analysis]
26 Li T, Xiao K. Solid‐State Iontronic Devices: Mechanisms and Applications. Adv Materials Technologies. [DOI: 10.1002/admt.202200205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Neema S, Abhijith AR, Panwar OS, Srivastava A, Rana A. Tunable thermochromism in V2O5 films deposited by cathodic vacuum arc method by tailoring the oxygen deficiency. J Phys : Conf Ser 2022;2267:012009. [DOI: 10.1088/1742-6596/2267/1/012009] [Reference Citation Analysis]
28 Liu X, Wang G, Wang J, Gong X, Chang J, Jin X, Zhang X, Wang J, Hao J, Liu B. Electrochromic and Capacitive Properties of WO3 Nanowires Prepared by One-Step Water Bath Method. Coatings 2022;12:595. [DOI: 10.3390/coatings12050595] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Cheng Y, Lu T, Hong M, Ho J, Chou C, Ho J, Hsieh T. Evaluation of Transparent ITO/Nano-Ag/ITO Electrode Grown on Flexible Electrochromic Devices by Roll-to-Roll Sputtering Technology. Coatings 2022;12:455. [DOI: 10.3390/coatings12040455] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Han J, Kim D, Kim J, Kim G, Kim JT, Jeong H. Responsive photonic nanopixels with hybrid scatterers. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2021-0806] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Mohanadas D, Sulaiman Y. Recent advances in development of electroactive composite materials for electrochromic and supercapacitor applications. Journal of Power Sources 2022;523:231029. [DOI: 10.1016/j.jpowsour.2022.231029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
32 Ahmad R, Dipalo V, Bell M, Ebralidze II, Zenkina OV, Easton EB. Surface-Enhanced Counter Electrode Materials for the Fabrication of Ultradurable Electrochromic Devices. ACS Appl Energy Mater 2022;5:3905-14. [DOI: 10.1021/acsaem.1c03480] [Reference Citation Analysis]
33 Guo J, Diao X, Wang M, Zhang ZB, Xie Y. Self-Driven Electrochromic Window System Cu/WOx-Al3+/GR with Dynamic Optical Modulation and Static Graph Display Functions. ACS Appl Mater Interfaces 2022. [PMID: 35188734 DOI: 10.1021/acsami.1c22392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zhai Y, Li J, Shen S, Zhu Z, Mao S, Xiao X, Zhu C, Tang J, Lu X, Chen J. Recent Advances on Dual‐Band Electrochromic Materials and Devices. Adv Funct Materials 2022;32:2109848. [DOI: 10.1002/adfm.202109848] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
35 Sahu DR, Hung C, Wang S, Huang J. Effects of a polystyrene intermediate layer for improved electrochromic properties of nano porous WO 3 electrochromic films. Mater Adv . [DOI: 10.1039/d2ma00476c] [Reference Citation Analysis]
36 Gong H, Li W, Fu G, Zhang Q, Liu J, Jin Y, Wang H. Recent progress and advances in electrochromic devices exhibiting infrared modulation. J Mater Chem A. [DOI: 10.1039/d1ta10970g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
37 Ma D, Lee-Sie Eh A, Cao S, Lee PS, Wang J. Wide-Spectrum Modulated Electrochromic Smart Windows Based on MnO2/PB Films. ACS Appl Mater Interfaces 2021. [PMID: 34957823 DOI: 10.1021/acsami.1c20011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
38 Wang K, Ikeuchi H, Yoshida M, Tsunekawa S, Liu I, Cui S, Nagatsuka R, Hu C, Kawai T. Insights into the deposition of nanostructured nickel oxides by amino acid chelated Complexes: Benefits of mixed side chains in the formation of nanostructures for Energy-efficient Electrochromic windows. Applied Surface Science 2021;568:150914. [DOI: 10.1016/j.apsusc.2021.150914] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Zhang W, Li H, Elezzabi AY. Electrochromic Displays Having Two‐Dimensional CIE Color Space Tunability. Adv Funct Materials 2022;32:2108341. [DOI: 10.1002/adfm.202108341] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
40 Dalenjan FA, Bagheri–mohagheghi MM, Shirpay A. The effect of cobalt (Co) concentration on structural, optical, and electrochemical properties of tungsten oxide (WO3) thin films deposited by spray pyrolysis. J Solid State Electrochem 2022;26:401-8. [DOI: 10.1007/s10008-021-05076-9] [Reference Citation Analysis]
41 Wang K, Zhang H, Xie W, Chen G, Jiang R, Tao K, Liang L, Gao J, Cao H. Unraveling the Role of Water on the Electrochromic and Electrochemical Properties of Nickel Oxide Electrodes in Electrochromic Pseudocapacitors. J Electrochem Soc 2021;168:113502. [DOI: 10.1149/1945-7111/ac3527] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Gong H, Ai J, Li W, Zhu J, Zhang Q, Liu J, Jin Y, Wang H. Self-Driven Infrared Electrochromic Device with Tunable Optical and Thermal Management. ACS Appl Mater Interfaces 2021;13:50319-28. [PMID: 34637271 DOI: 10.1021/acsami.1c14123] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
43 Zhang J, Wang D, Ying Y, Zhou H, Liu X, Hu X, Chen Y, Li Q, Zhang X, Qiu M. Grayscale-patterned metal-hydrogel-metal microscavity for dynamic multi-color display. Nanophotonics 2021;10:4125-31. [DOI: 10.1515/nanoph-2021-0413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Kuai Y, Yang T, Yuan F, Dong Y, Song Q, Zhang C, Wong W. Self-assembled flexible metallo-supramolecular film based on Fe(II) ion and triphenylamine-subsituted alkyl terpyridine towards electrochromic application. Dyes and Pigments 2021;194:109623. [DOI: 10.1016/j.dyepig.2021.109623] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
45 Zhang W, Li H, Yu WW, Elezzabi AY. Emerging Zn Anode‐Based Electrochromic Devices. Small Science 2021;1:2100040. [DOI: 10.1002/smsc.202100040] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
46 Wang K, Meng Q, Wang Q, Zhang W, Guo J, Cao S, Elezzabi AY, Yu WW, Liu L, Li H. Advances in Energy‐Efficient Plasmonic Electrochromic Smart Windows Based on Metal Oxide Nanocrystals. Adv Energy Sustain Res 2021;2:2100117. [DOI: 10.1002/aesr.202100117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
47 Zhao Y, Lin Y, Zeng Z, Su C, Jiang C. Determination of the dynamic dielectric function of PEDOT:PSS from the visible to the near-infrared region. Opt Mater Express 2021;11:3049. [DOI: 10.1364/ome.435054] [Reference Citation Analysis]
48 Wu Q, Wang X, Sun P, Wang Z, Chen J, Chen Z, Song G, Liu C, Mu X, Cong S, Zhao Z. Electrochromic Metamaterials of Metal-Dielectric Stacks for Multicolor Displays with High Color Purity. Nano Lett 2021;21:6891-7. [PMID: 34355916 DOI: 10.1021/acs.nanolett.1c02030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
49 Guo J, Guo X, Sun H, Xie Y, Diao X, Wang M, Zeng X, Zhang ZB. Unprecedented Electrochromic Stability of a-WO3-x Thin Films Achieved by Using a Hybrid-Cationic Electrolyte. ACS Appl Mater Interfaces 2021;13:11067-77. [PMID: 33645966 DOI: 10.1021/acsami.0c22921] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]