BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yu ZF, Nikolova-Karakashian M, Zhou D, Cheng G, Schuchman EH, Mattson MP. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J Mol Neurosci. 2000;15:85-97. [PMID: 11220788 DOI: 10.1385/JMN:15:2:85] [Cited by in Crossref: 138] [Cited by in F6Publishing: 51] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Jana A, Hogan EL, Pahan K. Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 2009;278:5-15. [PMID: 19147160 DOI: 10.1016/j.jns.2008.12.010] [Cited by in Crossref: 150] [Cited by in F6Publishing: 143] [Article Influence: 11.5] [Reference Citation Analysis]
2 Jin J, Hou Q, Mullen TD, Zeidan YH, Bielawski J, Kraveka JM, Bielawska A, Obeid LM, Hannun YA, Hsu YT. Ceramide generated by sphingomyelin hydrolysis and the salvage pathway is involved in hypoxia/reoxygenation-induced Bax redistribution to mitochondria in NT-2 cells. J Biol Chem. 2008;283:26509-26517. [PMID: 18676372 DOI: 10.1074/jbc.m801597200] [Cited by in Crossref: 52] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
3 Chudakova DA, Zeidan YH, Wheeler BW, Yu J, Novgorodov SA, Kindy MS, Hannun YA, Gudz TI. Integrin-associated Lyn kinase promotes cell survival by suppressing acid sphingomyelinase activity. J Biol Chem 2008;283:28806-16. [PMID: 18682390 DOI: 10.1074/jbc.M803301200] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
4 Juhila J, Sipilä T, Icay K, Nicorici D, Ellonen P, Kallio A, Korpelainen E, Greco D, Hovatta I. MicroRNA expression profiling reveals miRNA families regulating specific biological pathways in mouse frontal cortex and hippocampus. PLoS One 2011;6:e21495. [PMID: 21731767 DOI: 10.1371/journal.pone.0021495] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 5.5] [Reference Citation Analysis]
5 He X, Schuchman EH. Ceramide and Ischemia/Reperfusion Injury. J Lipids 2018;2018:3646725. [PMID: 29610685 DOI: 10.1155/2018/3646725] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
6 Kilkus JP, Goswami R, Dawson SA, Testai FD, Berdyshev EV, Han X, Dawson G. Differential regulation of sphingomyelin synthesis and catabolism in oligodendrocytes and neurons. J Neurochem 2008;106:1745-57. [PMID: 18489714 DOI: 10.1111/j.1471-4159.2008.05490.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
7 Brunkhorst R, Friedlaender F, Ferreirós N, Schwalm S, Koch A, Grammatikos G, Toennes S, Foerch C, Pfeilschifter J, Pfeilschifter W. Alterations of the Ceramide Metabolism in the Peri-Infarct Cortex Are Independent of the Sphingomyelinase Pathway and Not Influenced by the Acid Sphingomyelinase Inhibitor Fluoxetine. Neural Plast 2015;2015:503079. [PMID: 26605090 DOI: 10.1155/2015/503079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
8 Levitsky Y, Hammer SS, Fisher KP, Huang C, Gentles TL, Pegouske DJ, Xi C, Lydic TA, Busik JV, Proshlyakov DA. Mitochondrial Ceramide Effects on the Retinal Pigment Epithelium in Diabetes. Int J Mol Sci 2020;21:E3830. [PMID: 32481596 DOI: 10.3390/ijms21113830] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Novgorodov SA, Gudz TI. Ceramide and mitochondria in ischemia/reperfusion. J Cardiovasc Pharmacol 2009;53:198-208. [PMID: 19247196 DOI: 10.1097/FJC.0b013e31819b52d5] [Cited by in Crossref: 54] [Cited by in F6Publishing: 31] [Article Influence: 4.2] [Reference Citation Analysis]
10 Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101:2070-2075. [PMID: 14970312 DOI: 10.1073/pnas.0305799101] [Cited by in Crossref: 685] [Cited by in F6Publishing: 658] [Article Influence: 38.1] [Reference Citation Analysis]
11 Smith EL, Schuchman EH. The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 2008;22:3419-31. [PMID: 18567738 DOI: 10.1096/fj.08-108043] [Cited by in Crossref: 146] [Cited by in F6Publishing: 150] [Article Influence: 10.4] [Reference Citation Analysis]
12 Jo M, Chung AY, Yachie N, Seo M, Jeon H, Nam Y, Seo Y, Kim E, Zhong Q, Vidal M, Park HC, Roth FP, Suk K. Yeast genetic interaction screen of human genes associated with amyotrophic lateral sclerosis: identification of MAP2K5 kinase as a potential drug target. Genome Res 2017;27:1487-500. [PMID: 28596290 DOI: 10.1101/gr.211649.116] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
13 Park MH, Jin HK, Bae JS. Potential therapeutic target for aging and age-related neurodegenerative diseases: the role of acid sphingomyelinase. Exp Mol Med 2020;52:380-9. [PMID: 32203096 DOI: 10.1038/s12276-020-0399-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
14 Riethmüller J, Riehle A, Grassmé H, Gulbins E. Ceramide in Pseudomonas aeruginosa infections. Eur J Lipid Sci Technol 2007;109:998-1002. [DOI: 10.1002/ejlt.200700045] [Reference Citation Analysis]
15 Liu JW, Montero M, Bu L, De Leon M. Epidermal fatty acid-binding protein protects nerve growth factor-differentiated PC12 cells from lipotoxic injury. J Neurochem 2015;132:85-98. [PMID: 25147052 DOI: 10.1111/jnc.12934] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
16 Gusain A, Hatcher JF, Adibhatla RM, Wesley UV, Dempsey RJ. Anti-proliferative effects of tricyclodecan-9-yl-xanthogenate (D609) involve ceramide and cell cycle inhibition. Mol Neurobiol 2012;45:455-64. [PMID: 22415444 DOI: 10.1007/s12035-012-8254-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
17 Testai FD, Xu HL, Kilkus J, Suryadevara V, Gorshkova I, Berdyshev E, Pelligrino DA, Dawson G. Changes in the metabolism of sphingolipids after subarachnoid hemorrhage. J Neurosci Res 2015;93:796-805. [PMID: 25597763 DOI: 10.1002/jnr.23542] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
18 Norman E, Cutler RG, Flannery R, Wang Y, Mattson MP. Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. J Neurochem 2010;114:430-9. [PMID: 20456020 DOI: 10.1111/j.1471-4159.2010.06779.x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
19 Beckmann N, Sharma D, Gulbins E, Becker KA, Edelmann B. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons. Front Physiol 2014;5:331. [PMID: 25228885 DOI: 10.3389/fphys.2014.00331] [Cited by in Crossref: 66] [Cited by in F6Publishing: 69] [Article Influence: 8.3] [Reference Citation Analysis]
20 Boini KM, Xia M, Li C, Zhang C, Payne LP, Abais JM, Poklis JL, Hylemon PB, Li PL. Acid sphingomyelinase gene deficiency ameliorates the hyperhomocysteinemia-induced glomerular injury in mice. Am J Pathol 2011;179:2210-9. [PMID: 21893018 DOI: 10.1016/j.ajpath.2011.07.019] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 3.1] [Reference Citation Analysis]
21 Bae M, Bandaru VV, Patel N, Haughey NJ. Ceramide metabolism analysis in a model of binge drinking reveals both neuroprotective and toxic effects of ethanol. J Neurochem 2014;131:645-54. [PMID: 25060779 DOI: 10.1111/jnc.12834] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
22 Tang H, Tang Y, Li NG, Lin H, Li W, Shi Q, Zhang W, Zhang P, Dong Z, Shen M, Gu T, Duan JA. Comparative Metabolomic Analysis of the Neuroprotective Effects of Scutellarin and Scutellarein against Ischemic Insult. PLoS One 2015;10:e0131569. [PMID: 26147971 DOI: 10.1371/journal.pone.0131569] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
23 Novgorodov SA, Riley CL, Keffler JA, Yu J, Kindy MS, Macklin WB, Lombard DB, Gudz TI. SIRT3 Deacetylates Ceramide Synthases: IMPLICATIONS FOR MITOCHONDRIAL DYSFUNCTION AND BRAIN INJURY. J Biol Chem 2016;291:1957-73. [PMID: 26620563 DOI: 10.1074/jbc.M115.668228] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 5.9] [Reference Citation Analysis]
24 Hagemann N, Mohamud Yusuf A, Martiny C, Zhang X, Kleinschnitz C, Gunzer M, Kolesnick R, Gulbins E, Hermann DM. Homozygous Smpd1 deficiency aggravates brain ischemia/ reperfusion injury by mechanisms involving polymorphonuclear neutrophils, whereas heterozygous Smpd1 deficiency protects against mild focal cerebral ischemia. Basic Res Cardiol 2020;115:64. [PMID: 33057972 DOI: 10.1007/s00395-020-00823-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Mir C, Clotet J, Aledo R, Durany N, Argemí J, Lozano R, Cervós-Navarro J, Casals N. CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J Mol Neurosci 2003;20:53-60. [PMID: 12663935 DOI: 10.1385/JMN:20:1:53] [Cited by in Crossref: 32] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
26 Sun X, Liu C, Qian M, Zhao Z, Guo J. Ceramide from sphingomyelin hydrolysis differentially mediates mitogen-activated protein kinases (MAPKs) activation following cerebral ischemia in rat hippocampal CA1 subregion. J Biomed Res 2010;24:132-7. [PMID: 23554623 DOI: 10.1016/S1674-8301(10)60021-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
27 Hua G, Kolesnick R. Using ASMase knockout mice to model human diseases. Handb Exp Pharmacol 2013;:29-54. [PMID: 23563650 DOI: 10.1007/978-3-7091-1511-4_2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
28 Roux A, Muller L, Jackson SN, Post J, Baldwin K, Hoffer B, Balaban CD, Barbacci D, Schultz JA, Gouty S, Cox BM, Woods AS. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. J Neurosci Methods 2016;272:19-32. [PMID: 26872743 DOI: 10.1016/j.jneumeth.2016.02.004] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 9.5] [Reference Citation Analysis]
29 Shelat PB, Plant LD, Wang JC, Lee E, Marks JD. The membrane-active tri-block copolymer pluronic F-68 profoundly rescues rat hippocampal neurons from oxygen-glucose deprivation-induced death through early inhibition of apoptosis. J Neurosci 2013;33:12287-99. [PMID: 23884935 DOI: 10.1523/JNEUROSCI.5731-12.2013] [Cited by in Crossref: 36] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
30 Lee J, Chan SL, Mattson MP. Adverse effect of a presenilin-1 mutation in microglia results in enhanced nitric oxide and inflammatory cytokine responses to immune challenge in the brain. Neuromolecular Med 2002;2:29-45. [PMID: 12230303 DOI: 10.1385/NMM:2:1:29] [Cited by in Crossref: 55] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
31 Qin J, Testai FD, Dawson S, Kilkus J, Dawson G. Oxidized phosphatidylcholine formation and action in oligodendrocytes. J Neurochem 2009;110:1388-99. [PMID: 19545281 DOI: 10.1111/j.1471-4159.2009.06231.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
32 Deevska GM, Sunkara M, Morris AJ, Nikolova-Karakashian MN. Characterization of secretory sphingomyelinase activity, lipoprotein sphingolipid content and LDL aggregation in ldlr-/- mice fed on a high-fat diet. Biosci Rep 2012;32:479-90. [PMID: 22712892 DOI: 10.1042/BSR20120036] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
33 Haughey NJ, Bandaru VV, Bae M, Mattson MP. Roles for dysfunctional sphingolipid metabolism in Alzheimer's disease neuropathogenesis. Biochim Biophys Acta 2010;1801:878-86. [PMID: 20452460 DOI: 10.1016/j.bbalip.2010.05.003] [Cited by in Crossref: 170] [Cited by in F6Publishing: 168] [Article Influence: 14.2] [Reference Citation Analysis]
34 Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021;15:666958. [PMID: 34220427 DOI: 10.3389/fnins.2021.666958] [Reference Citation Analysis]
35 Stancevic B, Kolesnick R. Ceramide-rich platforms in transmembrane signaling. FEBS Lett 2010;584:1728-40. [PMID: 20178791 DOI: 10.1016/j.febslet.2010.02.026] [Cited by in Crossref: 188] [Cited by in F6Publishing: 178] [Article Influence: 15.7] [Reference Citation Analysis]
36 Peng B, Geue S, Coman C, Münzer P, Kopczynski D, Has C, Hoffmann N, Manke MC, Lang F, Sickmann A, Gawaz M, Borst O, Ahrends R. Identification of key lipids critical for platelet activation by comprehensive analysis of the platelet lipidome. Blood 2018;132:e1-e12. [PMID: 29784642 DOI: 10.1182/blood-2017-12-822890] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
37 Bock J, Liebisch G, Schweimer J, Schmitz G, Rogler G. Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function. World J Gastroenterol 2007; 13(39): 5217-5225 [PMID: 17876892 DOI: 10.3748/wjg.v13.i39.5217] [Cited by in CrossRef: 22] [Cited by in F6Publishing: 24] [Article Influence: 1.5] [Reference Citation Analysis]
38 Alesenko AV, Gavrilova SI, Gutner UA, Lebedeva AO, Shupik MA, Kolykhalov IV, Ponomareva EV, Selezneva ND, Fedorova YB. [Detection of effective treatment of amnestic mild cognitive impairement with cereton by testing of lipids markers]. Zh Nevrol Psikhiatr Im S S Korsakova 2017;117:21-7. [PMID: 28745666 DOI: 10.17116/jnevro20171176121-27] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
39 Novgorodov SA, Voltin JR, Gooz MA, Li L, Lemasters JJ, Gudz TI. Acid sphingomyelinase promotes mitochondrial dysfunction due to glutamate-induced regulated necrosis. J Lipid Res 2018;59:312-29. [PMID: 29282302 DOI: 10.1194/jlr.M080374] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 5.6] [Reference Citation Analysis]
40 Boini KM, Xia M, Abais JM, Xu M, Li CX, Li PL. Acid sphingomyelinase gene knockout ameliorates hyperhomocysteinemic glomerular injury in mice lacking cystathionine-β-synthase. PLoS One 2012;7:e45020. [PMID: 23024785 DOI: 10.1371/journal.pone.0045020] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
41 Luberto C, Kraveka JM, Hannun YA. Ceramide regulation of apoptosis versus differentiation: a walk on a fine line. Lessons from neurobiology. Neurochem Res 2002;27:609-17. [PMID: 12374196 DOI: 10.1023/a:1020267831851] [Cited by in Crossref: 44] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
42 Oskouian B, Saba JD. Cancer treatment strategies targeting sphingolipid metabolism. Adv Exp Med Biol 2010;688:185-205. [PMID: 20919655 DOI: 10.1007/978-1-4419-6741-1_13] [Cited by in Crossref: 86] [Cited by in F6Publishing: 82] [Article Influence: 7.2] [Reference Citation Analysis]
43 Vlassaks E, Mencarelli C, Nikiforou M, Strackx E, Ferraz MJ, Aerts JM, De Baets MH, Martinez-Martinez P, Gavilanes AW. Fetal asphyxia induces acute and persisting changes in the ceramide metabolism in rat brain. J Lipid Res 2013;54:1825-33. [PMID: 23625371 DOI: 10.1194/jlr.M034447] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
44 Borodzicz S, Czarzasta K, Kuch M, Cudnoch-Jedrzejewska A. Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis 2015;14:55. [PMID: 26076974 DOI: 10.1186/s12944-015-0053-y] [Cited by in Crossref: 82] [Cited by in F6Publishing: 72] [Article Influence: 11.7] [Reference Citation Analysis]
45 Thomas P, Pang Y. Membrane progesterone receptors: evidence for neuroprotective, neurosteroid signaling and neuroendocrine functions in neuronal cells. Neuroendocrinology 2012;96:162-71. [PMID: 22687885 DOI: 10.1159/000339822] [Cited by in Crossref: 96] [Cited by in F6Publishing: 92] [Article Influence: 9.6] [Reference Citation Analysis]
46 Szabò I, Adams C, Gulbins E. Ion channels and membrane rafts in apoptosis. Pflugers Arch 2004;448:304-12. [PMID: 15071744 DOI: 10.1007/s00424-004-1259-4] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 2.9] [Reference Citation Analysis]
47 Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T, Ouro A. Ceramide Metabolism and Parkinson's Disease-Therapeutic Targets. Biomolecules 2021;11:945. [PMID: 34202192 DOI: 10.3390/biom11070945] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
48 Adibhatla RM, Hatcher JF. Protection by D609 through cell-cycle regulation after stroke. Mol Neurobiol 2010;41:206-17. [PMID: 20148315 DOI: 10.1007/s12035-010-8100-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
49 Fan J, Wu BX, Crosson CE. Suppression of Acid Sphingomyelinase Protects the Retina from Ischemic Injury. Invest Ophthalmol Vis Sci 2016;57:4476-84. [PMID: 27571014 DOI: 10.1167/iovs.16-19717] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
50 Adibhatla RM, Hatcher JF, Gusain A. Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 2012;37:671-9. [PMID: 22101393 DOI: 10.1007/s11064-011-0659-z] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 6.5] [Reference Citation Analysis]
51 Mattson MP. Infectious agents and age-related neurodegenerative disorders. Ageing Res Rev 2004;3:105-20. [PMID: 15163105 DOI: 10.1016/j.arr.2003.08.005] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 2.7] [Reference Citation Analysis]
52 Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM, Liedl KR, Gulbins E, Tripal P. Identification of novel functional inhibitors of acid sphingomyelinase. PLoS One 2011;6:e23852. [PMID: 21909365 DOI: 10.1371/journal.pone.0023852] [Cited by in Crossref: 88] [Cited by in F6Publishing: 77] [Article Influence: 8.0] [Reference Citation Analysis]
53 Cheng YL, Park JS, Manzanero S, Choi Y, Baik SH, Okun E, Gelderblom M, Fann DY, Magnus T, Launikonis BS, Mattson MP, Sobey CG, Jo DG, Arumugam TV. Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis 2014;62:286-95. [PMID: 24141018 DOI: 10.1016/j.nbd.2013.10.009] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 4.8] [Reference Citation Analysis]