BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dickinson MS, Anderson LN, Webb-Robertson BM, Hansen JR, Smith RD, Wright AT, Hybiske K. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites. PLoS Pathog 2019;15:e1007698. [PMID: 30943267 DOI: 10.1371/journal.ppat.1007698] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Reinke AW. mSphere of Influence: Where the Pathogen Proteins Are. mSphere 2021;6:e00365-21. [PMID: 33952666 DOI: 10.1128/mSphere.00365-21] [Reference Citation Analysis]
2 Kebbi-Beghdadi C, Pilloux L, Martin V, Greub G. Eukaryotic Cell Permeabilisation to Identify New Putative Chlamydial Type III Secretion System Effectors Secreted within Host Cell Cytoplasm. Microorganisms 2020;8:E361. [PMID: 32138376 DOI: 10.3390/microorganisms8030361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Banerjee A, Nelson DE. The growing repertoire of genetic tools for dissecting chlamydial pathogenesis. Pathog Dis 2021;79:ftab025. [PMID: 33930127 DOI: 10.1093/femspd/ftab025] [Reference Citation Analysis]
4 Dolat L, Valdivia RH. A renewed tool kit to explore Chlamydia pathogenesis: from molecular genetics to new infection models. F1000Res 2019;8:F1000 Faculty Rev-935. [PMID: 31249676 DOI: 10.12688/f1000research.18832.1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
5 Bui DC, Jorgenson LM, Ouellette SP, Rucks EA. Eukaryotic SNARE VAMP3 Dynamically Interacts with Multiple Chlamydial Inclusion Membrane Proteins. Infect Immun 2021;89:e00409-20. [PMID: 33229367 DOI: 10.1128/IAI.00409-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Tang T, Wu H, Chen X, Chen L, Liu L, Li Z, Bai Q, Chen Y, Chen L. The Hypothetical Inclusion Membrane Protein CPSIT_0846 Regulates Mitochondrial-Mediated Host Cell Apoptosis via the ERK/JNK Signaling Pathway. Front Cell Infect Microbiol 2021;11:607422. [PMID: 33747977 DOI: 10.3389/fcimb.2021.607422] [Reference Citation Analysis]
7 Olson MG, Widner RE, Jorgenson LM, Lawrence A, Lagundzin D, Woods NT, Ouellette SP, Rucks EA. Proximity Labeling To Map Host-Pathogen Interactions at the Membrane of a Bacterium-Containing Vacuole in Chlamydia trachomatis-Infected Human Cells. Infect Immun 2019;87:e00537-19. [PMID: 31405957 DOI: 10.1128/IAI.00537-19] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
8 Zapatero-Belinchón FJ, Carriquí-Madroñal B, Gerold G. Proximity labeling approaches to study protein complexes during virus infection. Adv Virus Res 2021;109:63-104. [PMID: 33934830 DOI: 10.1016/bs.aivir.2021.02.001] [Reference Citation Analysis]
9 Jiang C, Huang X, Yao J, Yu L, Wei F, Yang A. The role of membrane contact sites at the bacteria-host interface. Crit Rev Microbiol 2021;:1-13. [PMID: 34403642 DOI: 10.1080/1040841X.2021.1961678] [Reference Citation Analysis]
10 Olson-Wood MG, Jorgenson LM, Ouellette SP, Rucks EA. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2. Infect Immun 2021;89:e0009421. [PMID: 33875478 DOI: 10.1128/IAI.00094-21] [Reference Citation Analysis]
11 Keb G, Ferrell J, Scanlon KR, Jewett TJ, Fields KA. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion. mBio 2021;12:e02861-20. [PMID: 33468693 DOI: 10.1128/mBio.02861-20] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zhang B, Liu B, Zhou Y, Zhang X, Zou Q, Liu X. Contributions of Mass Spectrometry-Based Proteomics to Understanding Salmonella-Host Interactions. Pathogens 2020;9:E581. [PMID: 32708900 DOI: 10.3390/pathogens9070581] [Reference Citation Analysis]
13 Santin YG. Uncovering the In Vivo Proxisome Using Proximity‐Tagging Methods. BioEssays 2019;41:1900131. [DOI: 10.1002/bies.201900131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
14 Olson MG, Ouellette SP, Rucks EA. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane. J Proteomics 2020;212:103595. [PMID: 31760040 DOI: 10.1016/j.jprot.2019.103595] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Quistgaard EM. BAP31: Physiological functions and roles in disease. Biochimie 2021;186:105-29. [PMID: 33930507 DOI: 10.1016/j.biochi.2021.04.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Muñoz KJ, Wang K, Sheehan LM, Tan M, Sütterlin C. The Small Molecule H89 Inhibits Chlamydia Inclusion Growth and Production of Infectious Progeny. Infect Immun 2021;89:e0072920. [PMID: 33820812 DOI: 10.1128/IAI.00729-20] [Reference Citation Analysis]
17 Alshareef MH, Hartland EL, McCaffrey K. Effectors Targeting the Unfolded Protein Response during Intracellular Bacterial Infection. Microorganisms 2021;9:705. [PMID: 33805575 DOI: 10.3390/microorganisms9040705] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
18 Sukumaran A, Woroszchuk E, Ross T, Geddes-McAlister J. Proteomics of host-bacterial interactions: new insights from dual perspectives. Can J Microbiol 2021;67:213-25. [PMID: 33027598 DOI: 10.1139/cjm-2020-0324] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]