BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tempera I, Wiedmer A, Dheekollu J, Lieberman PM. CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog 2010;6:e1001048. [PMID: 20730088 DOI: 10.1371/journal.ppat.1001048] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Kim D, Jung S, Ryu HW, Choi M, Kang M, Kang H, Yuk HJ, Jeong H, Baek J, Song J, Kim J, Kang H, Han S, Oh S, Cho S. Selective oncolytic effect in Epstein-Barr virus (EBV)-associated gastric carcinoma through efficient lytic induction by Euphorbia extracts. Journal of Functional Foods 2018;42:146-58. [DOI: 10.1016/j.jff.2018.01.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Washington SD, Musarrat F, Ertel MK, Backes GL, Neumann DM. CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function. J Virol 2018;92:e00156-18. [PMID: 29437965 DOI: 10.1128/JVI.00156-18] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
3 Woellmer A, Arteaga-Salas JM, Hammerschmidt W. BZLF1 governs CpG-methylated chromatin of Epstein-Barr Virus reversing epigenetic repression. PLoS Pathog 2012;8:e1002902. [PMID: 22969425 DOI: 10.1371/journal.ppat.1002902] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 5.8] [Reference Citation Analysis]
4 Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, Tempera I. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J Virol 2014;88:1703-13. [PMID: 24257606 DOI: 10.1128/JVI.02209-13] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
5 Birdwell CE, Queen KJ, Kilgore PC, Rollyson P, Trutschl M, Cvek U, Scott RS. Genome-wide DNA methylation as an epigenetic consequence of Epstein-Barr virus infection of immortalized keratinocytes. J Virol 2014;88:11442-58. [PMID: 25056883 DOI: 10.1128/JVI.00972-14] [Cited by in Crossref: 68] [Cited by in F6Publishing: 46] [Article Influence: 8.5] [Reference Citation Analysis]
6 Niller HH, Tarnai Z, Decsi G, Zsedényi A, Bánáti F, Minarovits J. Role of epigenetics in EBV regulation and pathogenesis. Future Microbiol. 2014;9:747-756. [PMID: 25046522 DOI: 10.2217/fmb.14.41] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
7 Pentland I, Parish JL. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses. Viruses 2015;7:3574-85. [PMID: 26154016 DOI: 10.3390/v7072791] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
8 Tsai K, Chan L, Gibeault R, Conn K, Dheekollu J, Domsic J, Marmorstein R, Schang LM, Lieberman PM. Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection. J Virol 2014;88:14350-63. [PMID: 25275136 DOI: 10.1128/JVI.01895-14] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
9 Arvey A, Tempera I, Lieberman PM. Interpreting the Epstein-Barr Virus (EBV) epigenome using high-throughput data. Viruses 2013;5:1042-54. [PMID: 23549386 DOI: 10.3390/v5041042] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
10 Son M, Lee M, Ryu E, Moon A, Jeong C, Jung YW, Park GH, Sung G, Cho H, Kang H. Genipin as a novel chemical activator of EBV lytic cycle. J Microbiol 2015;53:155-65. [DOI: 10.1007/s12275-015-4672-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
11 Szpara ML, Tafuri YR, Parsons L, Shamim SR, Verstrepen KJ, Legendre M, Enquist LW. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS Pathog. 2011;7:e1002282. [PMID: 22022263 DOI: 10.1371/journal.ppat.1002282] [Cited by in Crossref: 105] [Cited by in F6Publishing: 97] [Article Influence: 9.5] [Reference Citation Analysis]
12 Lieberman PM. Keeping it quiet: chromatin control of gammaherpesvirus latency. Nat Rev Microbiol 2013;11:863-75. [PMID: 24192651 DOI: 10.1038/nrmicro3135] [Cited by in Crossref: 91] [Cited by in F6Publishing: 80] [Article Influence: 10.1] [Reference Citation Analysis]
13 Martin KA, Cesaroni M, Denny MF, Lupey LN, Tempera I. Global Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene Expression through EZH2. Mol Cell Biol 2015;35:3934-44. [PMID: 26370511 DOI: 10.1128/MCB.00635-15] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 3.1] [Reference Citation Analysis]
14 Paris C, Pentland I, Groves I, Roberts DC, Powis SJ, Coleman N, Roberts S, Parish JL. CCCTC-binding factor recruitment to the early region of the human papillomavirus 18 genome regulates viral oncogene expression. J Virol 2015;89:4770-85. [PMID: 25694598 DOI: 10.1128/JVI.00097-15] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
15 Yang J, Corces VG. Insulators, long-range interactions, and genome function. Curr Opin Genet Dev 2012;22:86-92. [PMID: 22265227 DOI: 10.1016/j.gde.2011.12.007] [Cited by in Crossref: 65] [Cited by in F6Publishing: 53] [Article Influence: 6.5] [Reference Citation Analysis]
16 Niller HH, Banati F, Salamon D, Minarovits J. Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases. In: Minarovits J, Niller HH, editors. Patho-Epigenetics of Infectious Disease. Cham: Springer International Publishing; 2016. pp. 39-69. [DOI: 10.1007/978-3-319-24738-0_3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
17 Buschle A, Hammerschmidt W. Epigenetic lifestyle of Epstein-Barr virus. Semin Immunopathol 2020;42:131-42. [PMID: 32232535 DOI: 10.1007/s00281-020-00792-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
18 Chen YJ, Chen YL, Chang Y, Wu CC, Ko YC, Tsao SW, Chen JY, Lin SF. Epstein-Barr Virus Rta-Mediated Accumulation of DNA Methylation Interferes with CTCF Binding in both Host and Viral Genomes. J Virol 2017;91:e00736-17. [PMID: 28490592 DOI: 10.1128/JVI.00736-17] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
19 Lee JS, Raja P, Pan D, Pesola JM, Coen DM, Knipe DM. CCCTC-Binding Factor Acts as a Heterochromatin Barrier on Herpes Simplex Viral Latent Chromatin and Contributes to Poised Latent Infection. mBio 2018;9:e02372-17. [PMID: 29437926 DOI: 10.1128/mBio.02372-17] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
20 Lu F, Tempera I, Lee HT, Dewispelaere K, Lieberman PM. EBNA1 binding and epigenetic regulation of gastrokine tumor suppressor genes in gastric carcinoma cells. Virol J 2014;11:12. [PMID: 24460791 DOI: 10.1186/1743-422X-11-12] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
21 Woellmer A, Hammerschmidt W. Epstein-Barr virus and host cell methylation: regulation of latency, replication and virus reactivation. Curr Opin Virol. 2013;3:260-265. [PMID: 23567077 DOI: 10.1016/j.coviro.2013.03.005] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
22 Majumder K, Morales AJ. Utilization of Host Cell Chromosome Conformation by Viral Pathogens: Knowing When to Hold and When to Fold. Front Immunol 2021;12:633762. [PMID: 33841414 DOI: 10.3389/fimmu.2021.633762] [Reference Citation Analysis]
23 Saha A, Robertson ES. Mechanisms of B-Cell Oncogenesis Induced by Epstein-Barr Virus. J Virol 2019;93:e00238-19. [PMID: 30971472 DOI: 10.1128/JVI.00238-19] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
24 Lupey-Green LN, Moquin SA, Martin KA, McDevitt SM, Hulse M, Caruso LB, Pomerantz RT, Miranda JL, Tempera I. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter. Virology 2017;507:220-30. [PMID: 28456021 DOI: 10.1016/j.virol.2017.04.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
25 Penkert RR, Kalejta RF. Tegument protein control of latent herpesvirus establishment and animation. Herpesviridae 2011;2:3. [PMID: 21429246 DOI: 10.1186/2042-4280-2-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
26 Imai K, Kamio N, Cueno ME, Saito Y, Inoue H, Saito I, Ochiai K. Role of the histone H3 lysine 9 methyltransferase Suv39 h1 in maintaining Epsteinn-Barr virus latency in B95-8 cells. FEBS J 2014;281:2148-58. [PMID: 24588869 DOI: 10.1111/febs.12768] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
27 Martínez FP, Cruz R, Lu F, Plasschaert R, Deng Z, Rivera-Molina YA, Bartolomei MS, Lieberman PM, Tang Q. CTCF binding to the first intron of the major immediate early (MIE) gene of human cytomegalovirus (HCMV) negatively regulates MIE gene expression and HCMV replication. J Virol 2014;88:7389-401. [PMID: 24741094 DOI: 10.1128/JVI.00845-14] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
28 Deng Z, Wang Z, Lieberman PM. Telomeres and viruses: common themes of genome maintenance. Front Oncol 2012;2:201. [PMID: 23293769 DOI: 10.3389/fonc.2012.00201] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
29 Hammerschmidt W. The Epigenetic Life Cycle of Epstein-Barr Virus. Curr Top Microbiol Immunol 2015;390:103-17. [PMID: 26424645 DOI: 10.1007/978-3-319-22822-8_6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
30 Tempera I, Lieberman PM. Epigenetic regulation of EBV persistence and oncogenesis. Semin Cancer Biol 2014;26:22-9. [PMID: 24468737 DOI: 10.1016/j.semcancer.2014.01.003] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 8.1] [Reference Citation Analysis]
31 Yang J, Corces VG. Chromatin Insulators and Epigenetic Inheritance in Health and Disease. In: Sahu SC, editor. Toxicology and Epigenetics. Chichester: John Wiley & Sons, Ltd; 2012. pp. 539-67. [DOI: 10.1002/9781118349045.ch27] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
32 Tempera I, Klichinsky M, Lieberman PM. EBV latency types adopt alternative chromatin conformations. PLoS Pathog 2011;7:e1002180. [PMID: 21829357 DOI: 10.1371/journal.ppat.1002180] [Cited by in Crossref: 84] [Cited by in F6Publishing: 74] [Article Influence: 7.6] [Reference Citation Analysis]
33 Lee M, Son M, Ryu E, Shin YS, Kim JG, Kang BW, Cho H, Kang H. Quercetin-induced apoptosis prevents EBV infection. Oncotarget 2015;6:12603-24. [PMID: 26059439 DOI: 10.18632/oncotarget.3687] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
34 Chen HS, Lu F, Lieberman PM. Epigenetic regulation of EBV and KSHV latency. Curr Opin Virol 2013;3:251-9. [PMID: 23601957 DOI: 10.1016/j.coviro.2013.03.004] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.7] [Reference Citation Analysis]
35 Guo R, Gewurz BE. Epigenetic control of the Epstein-Barr lifecycle. Curr Opin Virol 2021;52:78-88. [PMID: 34891084 DOI: 10.1016/j.coviro.2021.11.013] [Reference Citation Analysis]
36 Lieberman PM. Chromatin Structure of Epstein-Barr Virus Latent Episomes. Curr Top Microbiol Immunol 2015;390:71-102. [PMID: 26424644 DOI: 10.1007/978-3-319-22822-8_5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
37 Palermo RD, Webb HM, West MJ. RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus. PLoS Pathog 2011;7:e1002334. [PMID: 22046134 DOI: 10.1371/journal.ppat.1002334] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 3.4] [Reference Citation Analysis]
38 Samakai E, Hooper R, Martin KA, Shmurak M, Zhang Y, Kappes DJ, Tempera I, Soboloff J. Novel STIM1-dependent control of Ca2+ clearance regulates NFAT activity during T-cell activation. FASEB J 2016;30:3878-86. [PMID: 27528628 DOI: 10.1096/fj.201600532R] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
39 Tsai K, Cullen BR. Epigenetic and epitranscriptomic regulation of viral replication. Nat Rev Microbiol 2020;18:559-70. [PMID: 32533130 DOI: 10.1038/s41579-020-0382-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 13.0] [Reference Citation Analysis]
40 Schoborg T, Labrador M. Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function. Cell Mol Life Sci 2014;71:4089-113. [PMID: 25012699 DOI: 10.1007/s00018-014-1672-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
41 Ertel MK, Cammarata AL, Hron RJ, Neumann DM. CTCF occupation of the herpes simplex virus 1 genome is disrupted at early times postreactivation in a transcription-dependent manner. J Virol 2012;86:12741-59. [PMID: 22973047 DOI: 10.1128/JVI.01655-12] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
42 Mehta K, Gunasekharan V, Satsuka A, Laimins LA. Human papillomaviruses activate and recruit SMC1 cohesin proteins for the differentiation-dependent life cycle through association with CTCF insulators. PLoS Pathog 2015;11:e1004763. [PMID: 25875106 DOI: 10.1371/journal.ppat.1004763] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 5.3] [Reference Citation Analysis]
43 Ramasubramanyan S, Osborn K, Flower K, Sinclair AJ. Dynamic chromatin environment of key lytic cycle regulatory regions of the Epstein-Barr virus genome. J Virol 2012;86:1809-19. [PMID: 22090141 DOI: 10.1128/JVI.06334-11] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
44 Merkenschlager M, Odom DT. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 2013;152:1285-97. [PMID: 23498937 DOI: 10.1016/j.cell.2013.02.029] [Cited by in Crossref: 274] [Cited by in F6Publishing: 254] [Article Influence: 30.4] [Reference Citation Analysis]
45 Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, Kimura H. Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021;13:2344. [PMID: 34960613 DOI: 10.3390/v13122344] [Reference Citation Analysis]
46 Lupey-Green LN, Caruso LB, Madzo J, Martin KA, Tan Y, Hulse M, Tempera I. PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type. J Virol 2018;92:e00755-18. [PMID: 29976663 DOI: 10.1128/JVI.00755-18] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
47 Holdorf MM, Cooper SB, Yamamoto KR, Miranda JJ. Occupancy of chromatin organizers in the Epstein-Barr virus genome. Virology 2011;415:1-5. [PMID: 21550623 DOI: 10.1016/j.virol.2011.04.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
48 Milavetz BI, Balakrishnan L. Viral epigenetics. Methods Mol Biol 2015;1238:569-96. [PMID: 25421681 DOI: 10.1007/978-1-4939-1804-1_30] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
49 Ghosh Roy S, Robertson ES, Saha A. Epigenetic Impact on EBV Associated B-Cell Lymphomagenesis. Biomolecules 2016;6:E46. [PMID: 27886133 DOI: 10.3390/biom6040046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
50 Ryu E, Son M, Lee M, Lee K, Cho JY, Cho S, Lee SK, Lee YM, Cho H, Sung GH, Kang H. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience 2014;1:866-81. [PMID: 25621301 DOI: 10.18632/oncoscience.110] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
51 Darst RP, Haecker I, Pardo CE, Renne R, Kladde MP. Epigenetic diversity of Kaposi's sarcoma-associated herpesvirus. Nucleic Acids Res 2013;41:2993-3009. [PMID: 23361465 DOI: 10.1093/nar/gkt033] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
52 Frost TC, Gewurz BE. Epigenetic crossroads of the Epstein-Barr virus B-cell relationship. Curr Opin Virol 2018;32:15-23. [PMID: 30227386 DOI: 10.1016/j.coviro.2018.08.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
53 Lieberman PM. Epigenetics and Genetics of Viral Latency. Cell Host Microbe 2016;19:619-28. [PMID: 27173930 DOI: 10.1016/j.chom.2016.04.008] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 15.2] [Reference Citation Analysis]
54 Golan-Mashiach M, Grunspan M, Emmanuel R, Gibbs-Bar L, Dikstein R, Shapiro E. Identification of CTCF as a master regulator of the clustered protocadherin genes. Nucleic Acids Res 2012;40:3378-91. [PMID: 22210889 DOI: 10.1093/nar/gkr1260] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 3.9] [Reference Citation Analysis]
55 Washington SD, Singh P, Johns RN, Edwards TG, Mariani M, Frietze S, Bloom DC, Neumann DM. The CCCTC Binding Factor, CTRL2, Modulates Heterochromatin Deposition and the Establishment of Herpes Simplex Virus 1 Latency In Vivo. J Virol 2019;93:e00415-19. [PMID: 30996085 DOI: 10.1128/JVI.00415-19] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
56 Atyeo N, Rodriguez MD, Papp B, Toth Z. Clinical Manifestations and Epigenetic Regulation of Oral Herpesvirus Infections. Viruses 2021;13:681. [PMID: 33920978 DOI: 10.3390/v13040681] [Reference Citation Analysis]
57 Hughes DJ, Marendy EM, Dickerson CA, Yetming KD, Sample CE, Sample JT. Contributions of CTCF and DNA methyltransferases DNMT1 and DNMT3B to Epstein-Barr virus restricted latency. J Virol 2012;86:1034-45. [PMID: 22072770 DOI: 10.1128/JVI.05923-11] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
58 Tikhmyanova N, Schultz DC, Lee T, Salvino JM, Lieberman PM. Identification of a new class of small molecules that efficiently reactivate latent Epstein-Barr Virus. ACS Chem Biol. 2014;9:785-795. [PMID: 24028149 DOI: 10.1021/cb4006326] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
59 Li D, Mosbruger T, Verma D, Swaminathan S. Complex Interactions between Cohesin and CTCF in Regulation of Kaposi's Sarcoma-Associated Herpesvirus Lytic Transcription. J Virol 2020;94:e01279-19. [PMID: 31666380 DOI: 10.1128/JVI.01279-19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Cohen JI. Herpesvirus latency. J Clin Invest 2020;130:3361-9. [PMID: 32364538 DOI: 10.1172/JCI136225] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
61 Hughes DJ, Dickerson CA, Shaner MS, Sample CE, Sample JT. trans-Repression of protein expression dependent on the Epstein-Barr virus promoter Wp during latency. J Virol 2011;85:11435-47. [PMID: 21865378 DOI: 10.1128/JVI.05158-11] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
62 Ernberg I, Karimi M, Ekström TJ. Epigenetic mechanisms as targets and companions of viral assaults: Ernberg et al. Annals of the New York Academy of Sciences 2011;1230:E29-36. [DOI: 10.1111/j.1749-6632.2011.06357.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
63 Martin KA, Lupey LN, Tempera I. Epstein-Barr Virus Oncoprotein LMP1 Mediates Epigenetic Changes in Host Gene Expression through PARP1. J Virol 2016;90:8520-30. [PMID: 27440880 DOI: 10.1128/JVI.01180-16] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
64 Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M, Leslie C, Lieberman PM. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe. 2012;12:233-245. [PMID: 22901543 DOI: 10.1016/j.chom.2012.06.008] [Cited by in Crossref: 152] [Cited by in F6Publishing: 142] [Article Influence: 16.9] [Reference Citation Analysis]
65 Zhang Y, Jiang C, Trudeau SJ, Narita Y, Zhao B, Teng M, Guo R, Gewurz BE. Histone Loaders CAF1 and HIRA Restrict Epstein-Barr Virus B-Cell Lytic Reactivation. mBio 2020;11:e01063-20. [PMID: 33109754 DOI: 10.1128/mBio.01063-20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
66 Pentland I, Campos-León K, Cotic M, Davies KJ, Wood CD, Groves IJ, Burley M, Coleman N, Stockton JD, Noyvert B, Beggs AD, West MJ, Roberts S, Parish JL. Disruption of CTCF-YY1-dependent looping of the human papillomavirus genome activates differentiation-induced viral oncogene transcription. PLoS Biol 2018;16:e2005752. [PMID: 30359362 DOI: 10.1371/journal.pbio.2005752] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
67 Hilton IB, Simon JM, Lieb JD, Davis IJ, Damania B, Dittmer DP. The open chromatin landscape of Kaposi's sarcoma-associated herpesvirus. J Virol 2013;87:11831-42. [PMID: 23986576 DOI: 10.1128/JVI.01685-13] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]