BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Koike K, Dehari H, Ogi K, Shimizu S, Nishiyama K, Sonoda T, Sasaki T, Sasaya T, Tsuchihashi K, Hasegawa T, Torigoe T, Hiratsuka H, Miyazaki A. Prognostic value of FoxP3 and CTLA-4 expression in patients with oral squamous cell carcinoma. PLoS One 2020;15:e0237465. [PMID: 32785290 DOI: 10.1371/journal.pone.0237465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
Number Citing Articles
1 Hua Y, Sun X, Luan K, Wang C. Prognostic signature related to the immune environment of oral squamous cell carcinoma. Open Life Sci 2022;17:1135-47. [PMID: 36185403 DOI: 10.1515/biol-2022-0467] [Reference Citation Analysis]
2 Curry J, Alnemri A, Philips R, Fiorella M, Sussman S, Stapp R, Solomides C, Harshyne L, South A, Luginbuhl A, Tuluc M, Martinez-Outschoorn U, Argiris A, Linnenbach A, Johnson J. CD8+ and FoxP3+ T-Cell Cellular Density and Spatial Distribution After Programmed Death-Ligand 1 Check Point Inhibition. Laryngoscope 2022. [PMID: 36125263 DOI: 10.1002/lary.30389] [Reference Citation Analysis]
3 Lv S, Qian Z, Li J, Piao S, Li J, Guo J. Identification and Validation of a Hypoxia-Immune-Based Prognostic mRNA Signature for Oral Squamous Cell Carcinoma. Journal of Oncology 2022;2022:1-16. [DOI: 10.1155/2022/5286251] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Yu Y, Tang H, Franceschi D, Mujagond P, Acharya A, Deng Y, Lethaus B, Savkovic V, Zimmerer R, Ziebolz D, Li S, Schmalz G. Immune Checkpoint Gene Expression Profiling Identifies Programmed Cell Death Ligand-1 Centered Immunologic Subtypes of Oral and Squamous Cell Carcinoma With Favorable Survival. Front Med 2022;8:759605. [DOI: 10.3389/fmed.2021.759605] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Wang MY, Zhu WW, Zhang JY, Yu M, Zhai RD, Liu LK. Tertiary lymphoid structures in oral lichen planus and oral epithelial dysplasia with lichenoid features: A comparative study. Oral Dis 2021. [PMID: 34897887 DOI: 10.1111/odi.14097] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Kujan O, Agag M, Smaga M, Vaishnaw Y, Idrees M, Shearston K, Farah CS. PD-1/PD-L1, Treg-related proteins, and tumour-infiltrating lymphocytes are associated with the development of oral squamous cell carcinoma. Pathology 2021:S0031-3025(21)00523-7. [PMID: 34872754 DOI: 10.1016/j.pathol.2021.09.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
7 Shetty SS, Padam KSR, Hunter KD, Kudva A, Radhakrishnan R. Biological implications of the immune factors in the tumour microenvironment of oral cancer. Arch Oral Biol 2021;133:105294. [PMID: 34735925 DOI: 10.1016/j.archoralbio.2021.105294] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Chao JL, Korzinkin M, Zhavoronkov A, Ozerov IV, Walker MT, Higgins K, Lingen MW, Izumchenko E, Savage PA. Effector T cell responses unleashed by regulatory T cell ablation exacerbate oral squamous cell carcinoma. Cell Rep Med 2021;2:100399. [PMID: 34622236 DOI: 10.1016/j.xcrm.2021.100399] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Zhang YY, Mao MH, Han ZX. Identification of a Gene Prognostic Signature for Oral Squamous Cell Carcinoma by RNA Sequencing and Bioinformatics. Biomed Res Int 2021;2021:6657767. [PMID: 33869632 DOI: 10.1155/2021/6657767] [Cited by in F6Publishing: 5] [Reference Citation Analysis]