BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chowdhury P, Sahuc ME, Rouillé Y, Rivière C, Bonneau N, Vandeputte A, Brodin P, Goswami M, Bandyopadhyay T, Dubuisson J, Séron K. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS One 2018;13:e0198226. [PMID: 30485282 DOI: 10.1371/journal.pone.0198226] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Fuzimoto AD, Isidoro C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic? J Tradit Complement Med 2020;10:405-19. [PMID: 32691005 DOI: 10.1016/j.jtcme.2020.05.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
2 Lehman CW, Kehn-Hall K, Aggarwal M, Bracci NR, Pan HC, Panny L, Lamb RA, Lin SC. Resveratrol Inhibits Venezuelan Equine Encephalitis Virus Infection by Interfering with the AKT/GSK Pathway. Plants (Basel) 2021;10:346. [PMID: 33673026 DOI: 10.3390/plants10020346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Shang A, Li J, Zhou DD, Gan RY, Li HB. Molecular mechanisms underlying health benefits of tea compounds. Free Radic Biol Med 2021;172:181-200. [PMID: 34118386 DOI: 10.1016/j.freeradbiomed.2021.06.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Kumari R, Kumar V, Dhankhar P, Dalal V. Promising antivirals for PLpro of SARS-CoV-2 using virtual screening, molecular docking, dynamics, and MMPBSA. J Biomol Struct Dyn 2022;:1-17. [PMID: 35510600 DOI: 10.1080/07391102.2022.2071340] [Reference Citation Analysis]
5 Takeda Y, Tamura K, Jamsransuren D, Matsuda S, Ogawa H. Severe Acute Respiratory Syndrome Coronavirus-2 Inactivation Activity of the Polyphenol-Rich Tea Leaf Extract with Concentrated Theaflavins and Other Virucidal Catechins. Molecules 2021;26:4803. [PMID: 34443390 DOI: 10.3390/molecules26164803] [Reference Citation Analysis]
6 Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S, Sinan KI, Ak G, Putnik P, Gallo M, Montesano D. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals (Basel) 2021;14:381. [PMID: 33921724 DOI: 10.3390/ph14040381] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn 2020;:1-16. [PMID: 32720577 DOI: 10.1080/07391102.2020.1796810] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
8 Chowdhury P, Barooah AK. Tea Bioactive Modulate Innate Immunity: In Perception to COVID-19 Pandemic. Front Immunol 2020;11:590716. [PMID: 33193427 DOI: 10.3389/fimmu.2020.590716] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
9 Cháirez-Ramírez MH, de la Cruz-López KG, García-Carrancá A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front Pharmacol 2021;12:710304. [PMID: 34744708 DOI: 10.3389/fphar.2021.710304] [Reference Citation Analysis]
10 Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, Liu HT, Wu CY. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol 2020;92:693-7. [PMID: 32167173 DOI: 10.1002/jmv.25761] [Cited by in Crossref: 107] [Cited by in F6Publishing: 96] [Article Influence: 53.5] [Reference Citation Analysis]
11 Mohamed IMA, Ogawa H, Takeda Y. In vitro virucidal activity of the theaflavin-concentrated tea extract TY-1 against influenza A virus. J Nat Med 2021. [PMID: 34550554 DOI: 10.1007/s11418-021-01568-0] [Reference Citation Analysis]
12 Deka H, Sarmah PP, Devi A, Tamuly P, Karak T. Changes in major catechins, caffeine, and antioxidant activity during CTC processing of black tea from North East India. RSC Adv 2021;11:11457-67. [DOI: 10.1039/d0ra09529j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Jamiu AT, Pohl CH, Bello S, Adedoja T, Sabiu S. A review on molecular docking analysis of phytocompounds against SARS-CoV-2 druggable targets. All Life 2021;14:1100-28. [DOI: 10.1080/26895293.2021.2013327] [Reference Citation Analysis]
14 Chojnacka K, Skrzypczak D, Izydorczyk G, Mikula K, Szopa D, Witek-Krowiak A. Antiviral Properties of Polyphenols from Plants. Foods 2021;10:2277. [PMID: 34681326 DOI: 10.3390/foods10102277] [Reference Citation Analysis]
15 Wu D, Mei S, Duan R, Geng F, Wu W, Li X, Cheng L, Wang C. How black tea pigment theaflavin dyes chicken eggs: Binding affinity study of theaflavin with ovalbumin. Food Chemistry 2020;303:125407. [DOI: 10.1016/j.foodchem.2019.125407] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 11.5] [Reference Citation Analysis]
16 Chaluvaraju B, Shaikh AB. Different Versions of Atom-Bond Connectivity Indices of Some Molecular Structures: Applied for the Treatment and Prevention of COVID-19. Polycyclic Aromatic Compounds. [DOI: 10.1080/10406638.2021.1872655] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Banerjee A, Kanwar M, Maiti S. Theaflavin-3'-O-gallate a Black-tea Constituent Blocked SARS CoV-2 RNA dependant RNA Polymerase Active-site with Better Docking Results than Remdesivir. Drug Res (Stuttg) 2021;71:462-72. [PMID: 34517419 DOI: 10.1055/a-1467-5828] [Reference Citation Analysis]
18 Luo Y, Jian Y, Liu Y, Jiang S, Muhammad D, Wang W. Flavanols from Nature: A Phytochemistry and Biological Activity Review. Molecules 2022;27:719. [PMID: 35163984 DOI: 10.3390/molecules27030719] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Bamba M, Bordage S, Sahuc M, Moureu S, Samaillie J, Roumy V, Vauchel P, Dimitrov K, Rouillé Y, Dubuisson J, Tra Bi FH, Séron K, Sahpaz S. Anti-HCV Tannins From Plants Traditionally Used in West Africa and Extracted With Green Solvents. Front Pharmacol 2022;12:789688. [DOI: 10.3389/fphar.2021.789688] [Reference Citation Analysis]
20 Ye T, Yang X, Liu H, Lv P, Lu H, Jiang K, Peng E, Ye Z, Chen Z, Tang K. Theaflavin protects against oxalate calcium-induced kidney oxidative stress injury via upregulation of SIRT1. Int J Biol Sci 2021;17:1050-60. [PMID: 33867828 DOI: 10.7150/ijbs.57160] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, Nencioni L. Redox-Modulating Agents in the Treatment of Viral Infections. Int J Mol Sci 2020;21:E4084. [PMID: 32521619 DOI: 10.3390/ijms21114084] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
22 Naidu SAG, Mustafa G, Clemens RA, Naidu AS. Plant-Derived Natural Non-Nucleoside Analog Inhibitors (NNAIs) against RNA-Dependent RNA Polymerase Complex (nsp7/nsp8/nsp12) of SARS-CoV-2. J Diet Suppl 2021;:1-30. [PMID: 34850656 DOI: 10.1080/19390211.2021.2006387] [Reference Citation Analysis]
23 Shan Z, Nisar MF, Li M, Zhang C, Wan CC. Theaflavin Chemistry and Its Health Benefits. Oxid Med Cell Longev 2021;2021:6256618. [PMID: 34804369 DOI: 10.1155/2021/6256618] [Reference Citation Analysis]
24 El-Missiry MA, Fekri A, Kesar LA, Othman AI. Polyphenols are potential nutritional adjuvants for targeting COVID-19. Phytother Res 2021;35:2879-89. [PMID: 33354848 DOI: 10.1002/ptr.6992] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 T M Rafiqul Islam A, Ferdousi J, Shahinozzaman M. Previously published ethno-pharmacological reports reveal the potentiality of plants and plant-derived products used as traditional home remedies by Bangladeshi COVID-19 patients to combat SARS-CoV-2. Saudi J Biol Sci 2021. [PMID: 34305428 DOI: 10.1016/j.sjbs.2021.07.036] [Reference Citation Analysis]
26 Gogoi M, Borkotoky M, Borchetia S, Chowdhury P, Mahanta S, Barooah AK. Black tea bioactives as inhibitors of multiple targets of SARS-CoV-2 (3CLpro, PLpro and RdRp): a virtual screening and molecular dynamic simulation study. J Biomol Struct Dyn 2021;:1-24. [PMID: 33715595 DOI: 10.1080/07391102.2021.1897679] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Samynathan R, Thiruvengadam M, Nile SH, Shariati MA, Rebezov M, Mishra RK, Venkidasamy B, Periyasamy S, Chung IM, Pateiro M, Lorenzo JM. Recent insights on tea metabolites, their biosynthesis and chemo-preventing effects: A review. Crit Rev Food Sci Nutr 2021;:1-20. [PMID: 34606382 DOI: 10.1080/10408398.2021.1984871] [Reference Citation Analysis]
28 Goc A, Sumera W, Rath M, Niedzwiecki A. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PLoS One 2021;16:e0253489. [PMID: 34138966 DOI: 10.1371/journal.pone.0253489] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Amin S, Ali H, Rehman MA, Mousa AAA, Andualem M, Alolaiyan H. Degree-Based Graph Invariants of some Chemical Structures for the Treatment of Corona Virus. Journal of Function Spaces 2022;2022:1-15. [DOI: 10.1155/2022/1847588] [Reference Citation Analysis]
30 Vazquez-Armenta FJ, Leyva JM, Mata-Haro V, Gonzalez-Aguilar GA, Cruz-Valenzuela MR, Esqueda M, Gutierrez A, Nazzaro F, Fratianni F, Gaitán-Hernández R, Ayala-Zavala JF. Phenolic compounds of Phellinus spp. with antibacterial and antiviral activities. Braz J Microbiol 2022. [PMID: 35380361 DOI: 10.1007/s42770-022-00745-x] [Reference Citation Analysis]
31 Amin S, Rehman MA, Naseem A, Khan I, Andualem M, Ali H. Treatment of COVID-19 Patients Using Some New Topological Indices. Journal of Chemistry 2022;2022:1-10. [DOI: 10.1155/2022/7309788] [Reference Citation Analysis]
32 Pauletto M, Elgendy R, Ianni A, Marone E, Giantin M, Grotta L, Ramazzotti S, Bennato F, Dacasto M, Martino G. Nutrigenomic Effects of Long-Term Grape Pomace Supplementation in Dairy Cows. Animals (Basel) 2020;10:E714. [PMID: 32325906 DOI: 10.3390/ani10040714] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Front Med (Lausanne) 2020;7:444. [PMID: 32850918 DOI: 10.3389/fmed.2020.00444] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
34 Mondal S, De N, Pal A. Topological Indices of Some Chemical Structures Applied for the Treatment of COVID-19 Patients. Polycyclic Aromatic Compounds. [DOI: 10.1080/10406638.2020.1770306] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 9.5] [Reference Citation Analysis]
35 Mehany T, Khalifa I, Barakat H, Althwab SA, Alharbi YM, El-Sohaimy S. Polyphenols as promising biologically active substances for preventing SARS-CoV-2: A review with research evidence and underlying mechanisms. Food Biosci 2021;40:100891. [PMID: 33495727 DOI: 10.1016/j.fbio.2021.100891] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]