BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rose S, Bennuri SC, Murray KF, Buie T, Winter H, Frye RE. Mitochondrial dysfunction in the gastrointestinal mucosa of children with autism: A blinded case-control study. PLoS One 2017;12:e0186377. [PMID: 29028817 DOI: 10.1371/journal.pone.0186377] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Kanlioz M, Ekici U, Ferhatoğlu MF. Total Gastrointestinal Flora Transplantation in the Treatment of Leaky Gut Syndrome and Flora Loss. Cureus 2022. [DOI: 10.7759/cureus.31071] [Reference Citation Analysis]
2 Frye RE, Cakir J, McCarty PJ, Rose S, Delhey LM, Palmer RF, Austin C, Curtin P, Yitshak-Sade M, Arora M. Air Pollution and Maximum Temperature Are Associated with Neurodevelopmental Regressive Events in Autism Spectrum Disorder. J Pers Med 2022;12. [PMID: 36579525 DOI: 10.3390/jpm12111809] [Reference Citation Analysis]
3 Vernocchi P, Ristori MV, Guerrera S, Guarrasi V, Conte F, Russo A, Lupi E, Albitar-Nehme S, Gardini S, Paci P, Ianiro G, Vicari S, Gasbarrini A, Putignani L. Gut Microbiota Ecology and Inferred Functions in Children With ASD Compared to Neurotypical Subjects. Front Microbiol 2022;13:871086. [PMID: 35756062 DOI: 10.3389/fmicb.2022.871086] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Pochakom A, Mu C, Rho JM, Tompkins TA, Mayengbam S, Shearer J. Selective Probiotic Treatment Positively Modulates the Microbiota-Gut-Brain Axis in the BTBR Mouse Model of Autism. Brain Sci 2022;12:781. [PMID: 35741667 DOI: 10.3390/brainsci12060781] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Liu G, Lin J, Zhang L, Gao Q, Wang Z, Chang Z, Gao Y, Ma D, Han Z. Uncovering the Mechanism of the Xingnaojing Injection against Ischemic Stroke Using a Combined Network Pharmacology Approach and Gut Microbiota Analysis. Evid Based Complement Alternat Med 2022;2022:5886698. [PMID: 35646156 DOI: 10.1155/2022/5886698] [Reference Citation Analysis]
6 Aldossary AM, Tawfik EA, Alomary MN, Alsudir SA, Alfahad AJ, Alshehri AA, Almughem FA, Mohammed RY, Alzaydi MM. Recent Advances in Mitochondrial Diseases: from Molecular Insights to Therapeutic Perspectives. Saudi Pharmaceutical Journal 2022. [DOI: 10.1016/j.jsps.2022.05.011] [Reference Citation Analysis]
7 Al-Biltagi M, Saeed NK, Qaraghuli S. Gastrointestinal disorders in children with autism: Could artificial intelligence help? Artif Intell Gastroenterol 2022; 3(1): 1-12 [DOI: 10.35712/aig.v3.i1.1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ābele S, Meija L, Folkmanis V, Tzivian L. Specific Carbohydrate Diet (SCD/GAPS) and Dietary Supplements for Children with Autistic Spectrum Disorder. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 2021;75:417-425. [DOI: 10.2478/prolas-2021-0062] [Reference Citation Analysis]
9 Franco C, Bonomini F, Borsani E, Castrezzati S, Franceschetti L, Rezzani R. Involvement of Intestinal Goblet Cells and Changes in Sodium Glucose Transporters Expression: Possible Therapeutic Targets in Autistic BTBR T+Itpr3tf/J Mice. Int J Environ Res Public Health 2021;18:11328. [PMID: 34769857 DOI: 10.3390/ijerph182111328] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Onishchenko D, Huang Y, van Horne J, Smith PJ, Msall ME, Chattopadhyay I. Reduced false positives in autism screening via digital biomarkers inferred from deep comorbidity patterns. Sci Adv 2021;7:eabf0354. [PMID: 34613766 DOI: 10.1126/sciadv.abf0354] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
11 Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021;13:37. [PMID: 34525941 DOI: 10.1186/s11689-021-09378-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Al-Ayadhi L, Zayed N, Bhat RS, Moubayed NMS, Al-Muammar MN, El-Ansary A. The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: a systematic review. Gut Pathog 2021;13:54. [PMID: 34517895 DOI: 10.1186/s13099-021-00448-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
13 James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021;9:662916. [PMID: 33937265 DOI: 10.3389/fcell.2021.662916] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Guimaraes de Souza Melo C, Nelisis Zanoni J, Raquel Garcia de Souza S, Zignani I, de Lima Leite A, Domingues Heubel A, Vanessa Colombo Martins Perles J, Afonso Rabelo Buzalaf M. Global Proteomic Profile Integrated to Quantitative and Morphometric Assessment of Enteric Neurons: Investigation of the Mechanisms Involved in the Toxicity Induced by Acute Fluoride Exposure in the Duodenum. Neurotox Res 2021;39:800-14. [PMID: 33689147 DOI: 10.1007/s12640-020-00296-9] [Reference Citation Analysis]
15 Panisi C, Guerini FR, Abruzzo PM, Balzola F, Biava PM, Bolotta A, Brunero M, Burgio E, Chiara A, Clerici M, Croce L, Ferreri C, Giovannini N, Ghezzo A, Grossi E, Keller R, Manzotti A, Marini M, Migliore L, Moderato L, Moscone D, Mussap M, Parmeggiani A, Pasin V, Perotti M, Piras C, Saresella M, Stoccoro A, Toso T, Vacca RA, Vagni D, Vendemmia S, Villa L, Politi P, Fanos V. Autism Spectrum Disorder from the Womb to Adulthood: Suggestions for a Paradigm Shift. J Pers Med 2021;11:70. [PMID: 33504019 DOI: 10.3390/jpm11020070] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 13.5] [Reference Citation Analysis]
16 Bjørklund G, Doşa MD, Maes M, Dadar M, Frye RE, Peana M, Chirumbolo S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol Res 2021;166:105437. [PMID: 33493659 DOI: 10.1016/j.phrs.2021.105437] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
17 Kopel J. Citrate and Autism. Encyclopedia of Autism Spectrum Disorders 2021. [DOI: 10.1007/978-3-319-91280-6_102409] [Reference Citation Analysis]
18 Hu T, Dong Y, He C, Zhao M, He Q. The Gut Microbiota and Oxidative Stress in Autism Spectrum Disorders (ASD). Oxid Med Cell Longev 2020;2020:8396708. [PMID: 33062148 DOI: 10.1155/2020/8396708] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
19 Frye RE, Cakir J, Rose S, Delhey L, Bennuri SC, Tippett M, Melnyk S, James SJ, Palmer RF, Austin C, Curtin P, Arora M. Prenatal air pollution influences neurodevelopment and behavior in autism spectrum disorder by modulating mitochondrial physiology. Mol Psychiatry 2021;26:1561-77. [PMID: 32963337 DOI: 10.1038/s41380-020-00885-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
20 Moradi K, Ashraf-Ganjouei A, Tavolinejad H, Bagheri S, Akhondzadeh S. The interplay between gut microbiota and autism spectrum disorders: A focus on immunological pathways. Prog Neuropsychopharmacol Biol Psychiatry 2021;106:110091. [PMID: 32891667 DOI: 10.1016/j.pnpbp.2020.110091] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
21 Balachandar V, Rajagopalan K, Jayaramayya K, Jeevanandam M, Iyer M. Mitochondrial dysfunction: A hidden trigger of autism? Genes Dis 2021;8:629-39. [PMID: 34291134 DOI: 10.1016/j.gendis.2020.07.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
22 Frye RE, Cakir J, Rose S, Delhey L, Bennuri SC, Tippett M, Palmer RF, Austin C, Curtin P, Arora M. Early life metal exposure dysregulates cellular bioenergetics in children with regressive autism spectrum disorder. Transl Psychiatry 2020;10:223. [PMID: 32636364 DOI: 10.1038/s41398-020-00905-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
23 Oh D, Cheon KA. Alteration of Gut Microbiota in Autism Spectrum Disorder: An Overview. Soa Chongsonyon Chongsin Uihak 2020;31:131-45. [PMID: 32665757 DOI: 10.5765/jkacap.190039] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
24 Kim M, Chung SK, Yang JC, Park JI, Nam SH, Park TW. Development of the Korean Form of the Premonitory Urge for Tics Scale: A Reliability and Validity Study. Soa Chongsonyon Chongsin Uihak 2020;31:146-53. [PMID: 32665758 DOI: 10.5765/jkacap.200013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Singh K, Singh IN, Diggins E, Connors SL, Karim MA, Lee D, Zimmerman AW, Frye RE. Developmental regression and mitochondrial function in children with autism. Ann Clin Transl Neurol 2020;7:683-94. [PMID: 32343046 DOI: 10.1002/acn3.51034] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
26 Pecorelli A, Ferrara F, Messano N, Cordone V, Schiavone ML, Cervellati F, Woodby B, Cervellati C, Hayek J, Valacchi G. Alterations of mitochondrial bioenergetics, dynamics, and morphology support the theory of oxidative damage involvement in autism spectrum disorder. FASEB J 2020;34:6521-38. [PMID: 32246805 DOI: 10.1096/fj.201902677R] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
27 Bjørklund G, Meguid NA, El-Bana MA, Tinkov AA, Saad K, Dadar M, Hemimi M, Skalny AV, Hosnedlová B, Kizek R, Osredkar J, Urbina MA, Fabjan T, El-Houfey AA, Kałużna-Czaplińska J, Gątarek P, Chirumbolo S. Oxidative Stress in Autism Spectrum Disorder. Mol Neurobiol 2020;57:2314-32. [PMID: 32026227 DOI: 10.1007/s12035-019-01742-2] [Cited by in Crossref: 97] [Cited by in F6Publishing: 95] [Article Influence: 32.3] [Reference Citation Analysis]
28 Ho LKH, Tong VJW, Syn N, Nagarajan N, Tham EH, Tay SK, Shorey S, Tambyah PA, Law ECN. Gut microbiota changes in children with autism spectrum disorder: a systematic review. Gut Pathog 2020;12:6. [PMID: 32025243 DOI: 10.1186/s13099-020-0346-1] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 15.7] [Reference Citation Analysis]
29 Andreo-Martínez P, García-Martínez N, Sánchez-Samper EP, Martínez-González AE. An approach to gut microbiota profile in children with autism spectrum disorder. Environ Microbiol Rep 2020;12:115-35. [PMID: 31713352 DOI: 10.1111/1758-2229.12810] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
30 Roman P, Rueda-Ruzafa L, Cardona D, Cortes-Rodríguez A. Gut-brain axis in the executive function of austism spectrum disorder. Behav Pharmacol 2018;29:654-63. [PMID: 30179883 DOI: 10.1097/FBP.0000000000000428] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
31 Castora FJ. Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019;92:83-108. [DOI: 10.1016/j.pnpbp.2018.12.015] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 8.8] [Reference Citation Analysis]
32 Bennuri SC, Rose S, Frye RE. Mitochondrial Dysfunction Is Inducible in Lymphoblastoid Cell Lines From Children With Autism and May Involve the TORC1 Pathway. Front Psychiatry 2019;10:269. [PMID: 31133888 DOI: 10.3389/fpsyt.2019.00269] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
33 Srikantha P, Mohajeri MH. The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. Int J Mol Sci 2019;20:E2115. [PMID: 31035684 DOI: 10.3390/ijms20092115] [Cited by in Crossref: 138] [Cited by in F6Publishing: 145] [Article Influence: 34.5] [Reference Citation Analysis]
34 Walker SJ, Langefeld CD, Zimmerman K, Schwartz MZ, Krigsman A. A molecular biomarker for prediction of clinical outcome in children with ASD, constipation, and intestinal inflammation. Sci Rep 2019;9:5987. [PMID: 30979947 DOI: 10.1038/s41598-019-42568-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
35 Jyonouchi H, Geng L, Rose S, Bennuri SC, Frye RE. Variations in Mitochondrial Respiration Differ in IL-1ß/IL-10 Ratio Based Subgroups in Autism Spectrum Disorders. Front Psychiatry 2019;10:71. [PMID: 30842746 DOI: 10.3389/fpsyt.2019.00071] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
36 Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther. 2018;22:571-593. [PMID: 30039193 DOI: 10.1007/s40291-018-0352-x] [Cited by in Crossref: 85] [Cited by in F6Publishing: 72] [Article Influence: 21.3] [Reference Citation Analysis]
37 Kopel J. Citrate and Autism. Encyclopedia of Autism Spectrum Disorders 2019. [DOI: 10.1007/978-1-4614-6435-8_102409-1] [Reference Citation Analysis]
38 Gagnon K, Godbout R. Melatonin and Comorbidities in Children with Autism Spectrum Disorder. Curr Dev Disord Rep 2018;5:197-206. [PMID: 30148039 DOI: 10.1007/s40474-018-0147-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 4.4] [Reference Citation Analysis]
39 Mohamadkhani A. Gut Microbiota and Fecal Metabolome Perturbation in Children with Autism Spectrum Disorder. Middle East J Dig Dis 2018;10:205-12. [PMID: 31049167 DOI: 10.15171/mejdd.2018.112] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
40 Lv QQ, You C, Zou XB, Deng HZ. Acyl-carnitine, C5DC, and C26 as potential biomarkers for diagnosis of autism spectrum disorder in children. Psychiatry Res. 2018;267:277-280. [PMID: 29945069 DOI: 10.1016/j.psychres.2018.06.027] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
41 Peretti S, Mariano M, Mazzocchetti C, Mazza M, Pino MC, Verrotti Di Pianella A, Valenti M. Diet: the keystone of autism spectrum disorder? Nutr Neurosci. 2019;22:825-839. [PMID: 29669486 DOI: 10.1080/1028415x.2018.1464819] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
42 Rose DR, Yang H, Serena G, Sturgeon C, Ma B, Careaga M, Hughes HK, Angkustsiri K, Rose M, Hertz-Picciotto I, Van de Water J, Hansen RL, Ravel J, Fasano A, Ashwood P. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav Immun 2018;70:354-68. [PMID: 29571898 DOI: 10.1016/j.bbi.2018.03.025] [Cited by in Crossref: 109] [Cited by in F6Publishing: 102] [Article Influence: 21.8] [Reference Citation Analysis]