BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Paul AL, Sng NJ, Zupanska AK, Krishnamurthy A, Schultz ER, Ferl RJ. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight? PLoS One 2017;12:e0180186. [PMID: 28662188 DOI: 10.1371/journal.pone.0180186] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Choi WG, Barker RJ, Kim SH, Swanson SJ, Gilroy S. Variation in the transcriptome of different ecotypes of Arabidopsis thaliana reveals signatures of oxidative stress in plant responses to spaceflight. Am J Bot 2019;106:123-36. [PMID: 30644539 DOI: 10.1002/ajb2.1223] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
2 Califar B, Zupanska A, Callaham JA, Bamsey MT, Graham T, Paul A, Ferl RJ. Shared Metabolic Remodeling Processes Characterize the Transcriptome of Arabidopsis thaliana within Various Suborbital Flight Environments. Gravitational and Space Research 2021;9:13-29. [DOI: 10.2478/gsr-2021-0002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Califar B, Sng NJ, Zupanska A, Paul AL, Ferl RJ. Root Skewing-Associated Genes Impact the Spaceflight Response of Arabidopsis thaliana. Front Plant Sci 2020;11:239. [PMID: 32194611 DOI: 10.3389/fpls.2020.00239] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
4 Zaimenko NV, Ivanytska BO, Rositska NV, Didyk NP, Liu D, Pyzyk M, Slaski J. Physiological responses of orchids to prolonged clinorotation. Biosys divers 2022;29:367-73. [DOI: 10.15421/012146] [Reference Citation Analysis]
5 Sathasivam M, Hosamani R, K Swamy B, Kumaran G S. Plant responses to real and simulated microgravity. Life Sci Space Res (Amst) 2021;28:74-86. [PMID: 33612182 DOI: 10.1016/j.lssr.2020.10.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Zhou M, Sng NJ, LeFrois CE, Paul AL, Ferl RJ. Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genomics 2019;20:205. [PMID: 30866818 DOI: 10.1186/s12864-019-5554-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
7 Paul AL, Haveman N, Califar B, Ferl RJ. Epigenomic Regulators Elongator Complex Subunit 2 and Methyltransferase 1 Differentially Condition the Spaceflight Response in Arabidopsis. Front Plant Sci 2021;12:691790. [PMID: 34589093 DOI: 10.3389/fpls.2021.691790] [Reference Citation Analysis]
8 Sng NJ, Kolaczkowski B, Ferl RJ, Paul AL. A member of the CONSTANS-Like protein family is a putative regulator of reactive oxygen species homeostasis and spaceflight physiological adaptation. AoB Plants 2019;11:ply075. [PMID: 30705745 DOI: 10.1093/aobpla/ply075] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
9 Manian V, Orozco-Sandoval J, Diaz-Martinez V. Detection of Genes in Arabidopsis thaliana L. Responding to DNA Damage from Radiation and Other Stressors in Spaceflight. Genes (Basel) 2021;12:938. [PMID: 34205326 DOI: 10.3390/genes12060938] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Treesubsuntorn C, Lakaew K, Autarmat S, Thiravetyan P. Enhancing benzene removal by Chlorophytum comosum under simulation microgravity system: Effect of light-dark conditions and indole-3-acetic acid. Acta Astronautica 2020;175:396-404. [DOI: 10.1016/j.actaastro.2020.05.061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Meyers A, Wyatt SE. Plant Space Biology in the Genomics Age. In: Roberts JA, editor. Annual Plant Reviews online. Wiley; 2018. pp. 123-50. [DOI: 10.1002/9781119312994.apr0784] [Reference Citation Analysis]
12 Barker R, Lombardino J, Rasmussen K, Gilroy S. Test of Arabidopsis Space Transcriptome: A Discovery Environment to Explore Multiple Plant Biology Spaceflight Experiments. Front Plant Sci 2020;11:147. [PMID: 32265943 DOI: 10.3389/fpls.2020.00147] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
13 Manzano A, Pereda-Loth V, de Bures A, Sáez-Vásquez J, Herranz R, Medina FJ. Light signals counteract alterations caused by simulated microgravity in proliferating plant cells. Am J Bot 2021;108:1775-92. [PMID: 34524692 DOI: 10.1002/ajb2.1728] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Beisel NS, Noble J, Barbazuk WB, Paul AL, Ferl RJ. Spaceflight-induced alternative splicing during seedling development in Arabidopsis thaliana. NPJ Microgravity 2019;5:9. [PMID: 30963109 DOI: 10.1038/s41526-019-0070-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
15 Zeng D, Cui J, Yin Y, Dai C, Zhao H, Song C, Guan S, Cheng D, Sun Y, Lu W. Combining Proteomics and Metabolomics to Analyze the Effects of Spaceflight on Rice Progeny. Front Plant Sci 2022;13:900143. [DOI: 10.3389/fpls.2022.900143] [Reference Citation Analysis]
16 Chandler JO, Haas FB, Khan S, Bowden L, Ignatz M, Enfissi EMA, Gawthrop F, Griffiths A, Fraser PD, Rensing SA, Leubner-Metzger G. Rocket Science: The Effect of Spaceflight on Germination Physiology, Ageing, and Transcriptome of Eruca sativa Seeds. Life (Basel) 2020;10:E49. [PMID: 32344775 DOI: 10.3390/life10040049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Manian V, Gangapuram H, Orozco J, Janwa H, Agrinsoni C. Network Analysis of Local Gene Regulators in Arabidopsis thaliana under Spaceflight Stress. Computers 2021;10:18. [DOI: 10.3390/computers10020018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Su SH, Keith MA, Masson PH. Gravity Signaling in Flowering Plant Roots. Plants (Basel) 2020;9:E1290. [PMID: 33003550 DOI: 10.3390/plants9101290] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
19 Angelos E, Ko DK, Zemelis-Durfee S, Brandizzi F. Relevance of the Unfolded Protein Response to Spaceflight-Induced Transcriptional Reprogramming in Arabidopsis. Astrobiology 2021;21:367-80. [PMID: 33325797 DOI: 10.1089/ast.2020.2313] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Zaimenko NV, Ivanytska BO, Rositska NV, Didyk NP, Liu D, Pyzyk M, Slaski J. Physiological responses of orchids to prolonged clinorotation. Biosys divers 2022;29:367-73. [DOI: 10.15421/10.15421/012146] [Reference Citation Analysis]
21 Paul AL, Elardo SM, Ferl R. Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Commun Biol 2022;5:382. [PMID: 35552509 DOI: 10.1038/s42003-022-03334-8] [Reference Citation Analysis]
22 Zupanska AK, LeFrois C, Ferl RJ, Paul AL. HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Int J Mol Sci 2019;20:E390. [PMID: 30658467 DOI: 10.3390/ijms20020390] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
23 Schuerger AC, Amaradasa BS, Dufault NS, Hummerick ME, Richards JT, Khodadad CL, Smith TM, Massa GD. Fusarium oxysporum as an Opportunistic Fungal Pathogen on Zinnia hybrida Plants Grown on board the International Space Station. Astrobiology 2021. [PMID: 33926205 DOI: 10.1089/ast.2020.2399] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Wang L, Xie J, Mou C, Jiao Y, Dou Y, Zheng H. Transcriptomic Analysis of the Interaction Between FLOWERING LOCUS T Induction and Photoperiodic Signaling in Response to Spaceflight. Front Cell Dev Biol 2021;9:813246. [PMID: 35178402 DOI: 10.3389/fcell.2021.813246] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Krishnamurthy A, Ferl RJ, Paul AL. Comparing RNA-Seq and microarray gene expression data in two zones of the Arabidopsis root apex relevant to spaceflight. Appl Plant Sci 2018;6:e01197. [PMID: 30473943 DOI: 10.1002/aps3.1197] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
26 Kiss JZ, Wolverton C, Wyatt SE, Hasenstein KH, van Loon JJWA. Comparison of Microgravity Analogs to Spaceflight in Studies of Plant Growth and Development. Front Plant Sci 2019;10:1577. [PMID: 31867033 DOI: 10.3389/fpls.2019.01577] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
27 Kruse CPS, Meyers AD, Basu P, Hutchinson S, Luesse DR, Wyatt SE. Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analyses. BMC Plant Biol 2020;20:237. [PMID: 32460700 DOI: 10.1186/s12870-020-02392-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
28 Medina FJ, Manzano A, Villacampa A, Ciska M, Herranz R. Understanding Reduced Gravity Effects on Early Plant Development Before Attempting Life-Support Farming in the Moon and Mars. Front Astron Space Sci 2021;8:729154. [DOI: 10.3389/fspas.2021.729154] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Sheppard J, Land ES, Toennisson TA, Doherty CJ, Perera IY. Uncovering Transcriptional Responses to Fractional Gravity in Arabidopsis Roots. Life (Basel) 2021;11:1010. [PMID: 34685382 DOI: 10.3390/life11101010] [Reference Citation Analysis]
30 Herranz R, Vandenbrink JP, Villacampa A, Manzano A, Poehlman WL, Feltus FA, Kiss JZ, Medina FJ. RNAseq Analysis of the Response of Arabidopsis thaliana to Fractional Gravity Under Blue-Light Stimulation During Spaceflight. Front Plant Sci 2019;10:1529. [PMID: 31850027 DOI: 10.3389/fpls.2019.01529] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
31 Manzano A, Villacampa A, Sáez-Vásquez J, Kiss JZ, Medina FJ, Herranz R. The Importance of Earth Reference Controls in Spaceflight -Omics Research: Characterization of Nucleolin Mutants from the Seedling Growth Experiments. iScience 2020;23:101686. [PMID: 33163940 DOI: 10.1016/j.isci.2020.101686] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
32 Manian V, Orozco J, Gangapuram H, Janwa H, Agrinsoni C. Network Analysis of Gene Transcriptions of Arabidopsis thaliana in Spaceflight Microgravity. Genes (Basel) 2021;12:337. [PMID: 33668919 DOI: 10.3390/genes12030337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Villacampa A, Sora L, Herranz R, Medina FJ, Ciska M. Analysis of Graviresponse and Biological Effects of Vertical and Horizontal Clinorotation in Arabidopsis thaliana Root Tip. Plants (Basel) 2021;10:734. [PMID: 33918741 DOI: 10.3390/plants10040734] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Manzano A, Carnero-Diaz E, Herranz R, Medina FJ. Recent transcriptomic studies to elucidate the plant adaptive response to spaceflight and to simulated space environments. iScience 2022;25:104687. [PMID: 35856037 DOI: 10.1016/j.isci.2022.104687] [Reference Citation Analysis]